
Applying Random Projection to the Classification of
Malicious Applications using Data Mining Algorithms

Jan Durand

Department of Computer Science
Louisiana Tech University

Ruston, LA 71270

jrd037@latech.edu

 Travis Atkison

Department of Computer Science
Louisiana Tech University

Ruston, LA 71270

atkison@latech.edu

ABSTRACT

This research is part of a continuing effort to show the viability of

using random projection as a feature extraction and reduction

technique in the classification of malware to produce more

accurate classifiers. In this paper, we use a vector space model

with n-gram analysis to produce weighted feature vectors from

binary executables, which we then reduce to a smaller feature set

using the random projection method proposed by Achlioptas, and

the feature selection method of mutual information to produce two

separate data sets. We then apply several popular machine

learning algorithms including J48 decision tree, naïve Bayes,

support vector machines, and an instance-based learner to the data

sets to produce classifiers for the detection of malicious

executables. We evaluate the performance of the different

classifiers and discover that using a data set reduced by random

projection can improve the performance of support vector

machine and instance-based learner classifiers.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General – Protection mechanisms

General Terms

Security

Keywords

Malicious software detection, information retrieval, n-gram

analysis, random projection, data mining

1. INTRODUCTION
Since the discovery of the “Elk Cloner” computer virus “in the

wild” in 1981[1], the rate of creation and spread of malicious

software applications has increased prodigiously. With the advent

of the Internet, all types of malicious software or “malware” have

an easily accessible and effective medium for propagation to

victims‟ machines. In defense, software tools such as anti-viruses

and intrusion detection systems have been developed by the Cyber

Security community to detect and disable attacks from such

malicious applications.

Traditionally, these defense tools used signature-based detection

which involves comparing the byte sequence of a suspected

malicious application to the signatures of known threats, stored in

a virus signature database. That is, signature-based detection tools

are incapable of detecting new and previously unknown threats

which do not contain any known signatures. This limitation leaves

signature-based anti-virus tools completely ineffective against

“zero-day” viruses until their signature database, aka virus

definitions, have been updated with the signatures of the new

threats.

There have been several research efforts into methods of detection

to mitigate some of the difficulties inherent in dealing with new

and unknown threats. Some of these approaches are based in the

realms of information retrieval and data mining such as [2-5] and

have yielded some promising results with respect to identifying

whether a program is malicious. However, many of these research

efforts are faced with the “curse of dimensionality” [2], which

refers to the challenges of computing in a high-dimensional space.

Dimensionality reduction techniques such as principal component

analysis, latent semantic indexing and random projection allow

the effects of the “curse of dimensionality” to be mitigated by

moving from a high dimensional space to a lower-dimensional

space.

This research is part of a continuing effort to show the viability of

using random projection as a feature extraction and reduction

technique in the classification of malware to produce more

accurate classifiers.

2. BACKGROUND
Below, we give a brief description of the information retrieval

technique of n-gram analysis which we use to produce feature

vectors from executable instances, as well as an overview of the

dimensionality reduction techniques used to reduce the dimension

of those feature vectors.

2.1 N-gram Analysis
The information retrieval technique of n-gram analysis has proven

to be a valuable tool for feature extraction in several research

efforts which focus on the detection and/or classification of

malicious applications [2-17]. An n-gram is any substring of

length n [18]. Since n-grams overlap, they do not just capture

statistics about substrings of length n, but also implicitly capture

frequencies of longer substrings [12]. In our experiments, n-grams

are extracted from the hexadecimal byte strings of executable

files, and one gram corresponds to one byte in hexadecimal form.

Due to the high dimensionality of n-gram feature sets, these

research efforts are often subject to the “curse of dimensionality.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

 

Conference’10

, March 29 - 31 2012, Tuscaloosa, AL, USA.
Copyright 2012 ACM

978-1-4503-1203-5/12/03…$10.00.

ACM SE 12

[19] Many of these research efforts use some form of

dimensionality reduction, such as mutual information in [5], to

curb these large feature sets in order to mitigate the effects of the

“curse of dimensionality.”

Kephart et al. referenced the fields of Information Retrieval and

Artificial Intelligence, while working with n-grams and Artificial

Neural Networks (ANNs) in their research of the malware

detection problem [14, 20]. Abou-Assaleh et al. applied the

Common N-Gram (CNG) analysis method [21], known for its

success in automatic authorship attribution and text clustering, to

the malware detection problem [12, 13].

Santos et al. [16] introduced a similar approach to Abou-Assaleh

et al. [13], using n-gram signatures to represent malicious and

benign programs. The n-gram signature for a program or file

consisted of every n-gram present in that file, and signatures for

1000 malicious and 1000 benign binary files were extracted to

create the corpus; 66% percent was used for training and 34% for

testing. Santos et al. also used the k-Nearest-Neighbor algorithm

to classify signatures of new instances against signatures in the

corpus.

Kolter used the information retrieval technique of n-gram analysis

to create binary feature vectors of malicious and benign programs,

which were used with machine learning algorithms to classify

unknown program instances [4, 5]. To create the feature vector for

a program, n-grams were extracted from the hexadecimal byte

sequences of the program, with each byte being considered a

gram. Several machine learning algorithms were applied to the

feature set, using the Wakaito Environment for Knowledge

Analysis (WEKA) [22]. These classification algorithms were the

k-Nearest-Neighbors Instance-based learner (IBk), a Naïve Bayes

classifier, a support vector machine (SVM), a decision tree (J48),

and “boosted” versions of the last three classifiers [5]. These

classifiers were trained and tested using stratified 10-fold cross-

validation, with n-grams of length 4 and feature vectors of the top

500 n-grams. Table 1 presents the AUC results for the algorithms.

Table 1. Classifier AUC Results with 95% Confidence

Interval from Kolter [5]

Method AUC

Boosted J48 0.9958±0.0024

SVM 0.9925±0.0033

Boosted SVM 0.9903±0.0038

IBk, k = 5 0.9899±0.0038

Boosted Naïve Bayes 0.9887±0.0042

J48 0.9712±0.0067

Naïve Bayes 0.9366±0.0099

2.2 Mutual Information
Mutual information has been used as a basis for feature selection

in the field of machine learning. Due to the enormity of the set of

n-grams extracted from a program, Kolter introduced a

dimensionality reduction processing step using mutual

information to reduce the dimensionality of the program feature

vectors. The most relevant of these n-grams were selected using

the average mutual information measure from Yang et al. [23],

also known as the Information Gain, calculated as:

where Ci is the ith class, v j is the value of the jth attribute, P(vj,Ci)

is the proportion that the jth attribute has the value vj in the class

Ci, P(v j) is the proportion that the jth n-gram takes the value vj in

the training data, and P(Ci) is the proportion of the training data

belonging to the class Ci [5].

2.3 Random Projection
Malicious application detection, following the genre of

information retrieval, suffers from the problem that the data, once

processed, is encoded in extremely high dimensions. This high-

dimensional data limits the kind and amount of analysis that can

be preformed. Though the feature selection technique of mutual

information has been very popular in reducing the feature sets of

such research efforts, another dimensionality reduction technique

which has been recently applied to the field of malware detection

is random projection.

Unlike the mutual information method used by Kolter [5], which

selects a subset of the total feature set, random projection is a

feature extraction technique which embeds a high dimensional

feature set into a “low-dimensional subspace using a random

matrix whose columns have unit length” [24], thus creating a

completely new set of features. This type of projection attempts to

retain the maximum amount of information embedded in the

original feature set while substantially reducing the number of

features required. By reducing the number of features, greater

amounts of analysis can be performed. The core concept has been

developed out of the Johnson-Lindenstrauss lemma [25] which

states that any set of n points in a Euclidean space can be mapped

to ℝt where t = with distortion ≤ 1 + ε in the distances.

Such a mapping may be found in random polynomial time. A

proof of this lemma can be found in [26].

Random projection has been used in several other research efforts.

Mannila et al. used random projection to aid in finding similarities

between sequences of events, specifically looking at how to better

handle network alarms within the telecommunication field [27] .

Bingham et al. utilized random projection in image and text

information retrieval and showed that random projection offered

greater accuracy and computational savings than more traditional

dimensionality reduction techniques such as principal component

analysis and singular value decomposition [28].

Kaski [29] utilized random projection in a text retrieval

application using WEBSOM, a graphical self-organizing map, to

overcome the computational costs of traditional dimensionality

reduction methods like principal component analysis on high-

dimensional data sets. Kaski was able to improve the

classification and topic separation performance of his tool after

using random projection over the previous methods used.

A few research efforts have used random projection with the

dimensionality reduction method of latent semantic indexing [30-

32], including Papadimitriou et al. who successfully used random

projection as a preprocessing step to the latent semantic indexing

method and improved the asymptotic running time of their overall

system from O(mnc) to O(m(log2n + clogn)), where m and n are

the dimensions of the matrix and c is the average number of terms

per document [30].

Goel et al. used random projection in the field of facial

recognition, which yielded comparable results to that of principal

component analysis while being computationally less expensive

and data independent [24].

Li et al. applied random projections to the field of network

anomaly detection to more precisely identify the underlying

causes of network anomalies [33]. More specifically, their

technique, called “Defeat”, allowed for the identification of the

)
log

(
2

n

 (1)

IP-flow(s) responsible for the anomaly as opposed to the

traditional method which only identified the origin-destination

flow. This was accomplished by creating multiple random

projections or “sketches” of global network traffic in the form of

IP-flows, which were then mined for information using the

“subspace” method. A voting procedure was also applied to the

detection results from the sketches to increase detection rate while

reducing false alarms. Based on an evaluation of a week-long

trace, Defeat displayed detection rates comparable to previous

methods and detected nearly 200 more anomalies. Li et al.

concluded “that random projections appear to preserve properties

of traffic data that are important for the effectiveness of the

subspace method.” [33]

Atkison was the first to introduce the random projection feature

extraction technique to the realm of malicious application

detection [7-11]. In a recent paper [10], Atkison et al. used a

vector space model with n-gram analysis to produce weighted

feature vectors from binary executables, similarly to Kolter [5].

Every dimension of these vectors represented a unique n-gram

which could be extracted from the corresponding executable.

These feature vectors were then used as input to random

projection algorithms in order to produce feature vectors of a

reduced dimension.

Three methods for random projection were used to reduce the

feature vectors: 1) matrix multiplication with a random matrix of

unit vectors with elements generated with a Gaussian distribution

of mean 0 and standard deviation of 1; 2) Achlioptas‟ matrix

multiplication with a random matrix of values of 0, +1, or -1

following a probability distribution of 2/3, 1/6 and 1/6

respectively [34]; 3) and random set projection based on the

Linial-London-Rabinovich algorithm [35], which is an extension

of the Johnson-Lindenstrauss [36] and Bourgain [36] algorithms.

To test the efficacy of using random projection in this particular

context of malware detection, Atkison extracted n-gram feature

vectors, with n-grams of length 3, 5, and 7, from a data set of

1544 Windows formatted binary executables: 709 benign files and

835 malicious files. Different corpuses of reduced feature vectors

were created using each of the different random projection

techniques mentioned above, each containing feature sets of 500,

1000, and 1500 features. For each of these corpuses, Atkison

compared each document feature vector to every other feature

vector and classified the document vector based on the classes of

the most similar vectors in the corpus.

The Cosine similarity measure was used to determine the

similarity between feature vectors over the range of threshold

values from 0 to 1.0 in increments of 0.05. Cosine similarity “has

the nice property that it is 1.0 for identical vectors and 0.0 for

orthogonal vectors.” [38] The experimental results were very

promising and produced true positive rates for prediction as high

as 0.95 and false positive rates as low as 0.02 [10], comparable to

results of previous research efforts using the reduction technique

of mutual information.

3. EXPERIMENT
In our experiments, we follow the methodology used by Kolter [5]

and use some well-known data mining algorithms to produce

classifiers to detect whether an executable is malicious or benign.

However, we use random projection as the dimensionality

reduction technique in order to compare the performance of

random projection against the established mutual information

method. The following provides a description of the components

of the experimental methodology that was used to detect

malicious applications using the information retrieval technique of

n-gram analysis and the dimensionality reduction technique of

random projection, as well as descriptions of the various data

mining algorithms used.

3.1 Data Set
The data set that was compiled together for the experiments

described in this section consisted of 1622 Windows formatted

binary executable files. None of the files in the data set were

larger than 950 KB. Of these files, 303 were extracted from a

fresh installation of the Windows XP operating system, another

406 were extracted from a fresh installation of the Windows Vista

operating system, and another 78 were extracted from a fresh

installation of the Windows 7 operating system. All of these sets

were obtained by installing the respective operating system in a

virtual environment that was installed on a commodity PC. These

virtual environments were not connected to the Internet and

therefore provided a safe location. This ensured that it would

allow for application extraction without the worry of malicious

infiltration during the gathering phase of the research effort. This

process provided a total of 787 files that were in the data set and

that were considered benign. The remaining 835 files for the data

set were malicious Trojan horse applications that were

downloaded from various websites on the Internet including

http://www.trojanfrance.com and http://vx.netlux.org.

A Trojan horse, similar to the myth, may provide a useful service

(for example, a calculator or Notepad) but once executed performs

harmful actions. Symantec reported in their bi-annual threat report

for the first half of 2005, that “six of the top ten spyware

(information leakage) programs were delivered to their victim by

being bundled with some other program.” [30] Trojans are a very

popular and effective way of infiltrating user systems. To give an

idea of their prevalence, in 2009, Trojans accounted for 6 of the

top 10 new malicious code families detected; 51 percent of the

volume of the top 50 malicious code samples reported; four of the

top 10 staged downloaders; and eight of the top 10 threat

components downloaded by modular malicious software [39].

3.2 Data Mining Algorithms
The following classification algorithms were used in the

performance evaluation of random projection as an effective

dimensionality reduction technique in the detection of malicious

applications. All classifiers used in this research were trained and

tested using the Waikato Environment for Knowledge Analysis

(WEKA) machine learning software suite [22], with 10-fold cross

validation on the training data set.

3.2.1 Instance Based Classifier
The instance-based classifier, also known as a lazy learner, uses

one of the most simple classification algorithms. It learns by

storing the vectors of training examples and their corresponding

labels, and classifies an unknown instance by giving it the label of

the most similar instance in the training set. The Euclidean

distance is usually used to measure the similarity or dissimilarity

of two instances. Instance-based learners are also known as

„nearest neighbor‟ or „k-nearest-neighbors‟. The k-nearest-

neighbor algorithm classifies an instance by a majority vote of the

labels of the k most similar instances in the training set. In our

experiments we used an instance-based learner (IBk) with a k of 5

as was used in Kolter‟s experiments, using Euclidean distance as

the distance metric.

3.2.2 Naive Bayes Classifier
The naive Bayes classifier is a probabilistic classifier based on the

Bayesian theorem and is popular in the fields of Information

retrieval and Machine learning. This classifier uses the prior

probability of a class P(Ci) and the conditional probability of each

feature attribute for the specified class, P(fj|Ci), in order to

determine the posterior probability that an unknown instance

belongs to a particular class given its feature vector, P(Ci, f) 5].

The prior probabilities of the classes and the conditional

probabilities of feature attributes for each class are estimated by

counting the number of occurrences in the training data of each

class and the attribute values for each class. The classifier

determines the class of an unknown instance by selecting the class

with the highest posterior probability. In order to simplify the

modeling of P(fj, Ci), it is assumed that the conditional

probabilities of each attribute are independent [40].

 (2)

3.2.3 Decision Tree
Decision trees or classification trees consist of internal nodes

which represent instance attributes, and leaf nodes which

represent the possible classes or labels of an instance. In order to

classify an unknown instance, the classifier starts at the root node

and follows the branch to a node which has an attribute value or

range of values that corresponds to the attribute value of the

instance in question. The tree is traversed in this fashion until a

leaf node is reached, and then the instance is classified as the label

of that leaf node. A decision tree is created by considering all the

instances in the training set and selecting a feature attribute which

best splits the data set into its respective classes. The attribute that

was previously selected is then removed from future consideration

and the process is repeated recursively on each data subset. The

last attribute split creates the leaf nodes which are labeled based

on a majority vote of the class labels of its elements. For attribute

selection, most implementations of the decision tree use an

information gain-based measure such as gain ratio in the C4.5

algorithm developed by Quinlan [41]. J48 is a Java

implementation of the C4.5 algorithm available in WEKA [22].

3.2.4 Support Vector Machines
Support vector machines (SVMs) produce a binary linear

classifier which is able to separate a data set into two distinct

classes, the positive and the negative class. The method works by

using a kernel function to map the feature vectors of the data

instances into a higher dimension so that the two classes of

instances can be easily separated by a straight line or hyper plane.

The hyper plane is described by the equation ,

where is a vector or set of weights perpendicular to the hyper

plane; is a point belonging to the hyper plane; and be is a

threshold value which determines the offset of the hyper plane

from the origin, along . The algorithm strives to choose a and

b which create an optimal hyper plane that maximizes the margin

between itself and the closest instances of each class. The idea is

to increase the dimension of the training data to get the instances

of one class on one side of the hyper plane and the next class on

the other side. Classification is performed by mapping an

unknown instance into the higher feature dimension and labeling

it based on which side of the hyper plane it appears; the instance

is labeled as the positive class if , or as the

negative class if otherwise. WEKA implements the sequential

minimal optimization (SMO) algorithm for training SVMs.

3.2.5 Boosted Classifiers
Boosting is a way of combining several classifiers to produce a

better classifier. Research shows that ensemble classifiers usually

perform better than individual classifiers, and are able to improve

regardless of how weak the individual classifier is [42]. Just like

in Kolter [5], we used the AdaBoost (Adaptive Boosting) method

implemented in WEKA to boost the performance of each of the

aforementioned classifiers except the instance-based learner due

to computational expense. AdaBoost works by iteratively training

several models of a classifier and reweighting the data set

instances in favor of instances which were misclassified

previously so subsequent classifiers can better predict the classes

of those instances. During classification of an unknown instance,

the different models and their respective weights are used to select

the class with the highest weight.

3.3 Experimental Design
This section describes the overall design of this experiment.

Following the methodology of Kolter [5], an n-gram size of 4 was

used to create feature vectors from the executables in the data set.

A binary value-weighting scheme was used for this effort,

whereby feature vectors were created for each document in the

data set by assigning a „1‟ to a vector dimension attribute if the

corresponding n-gram was present in the executable or „0‟ if it

was not. Feature vectors with a dimension of 25,368,317 were

created from the data set using n-grams of length 4. These feature

vectors were labeled with their corresponding class of either

malicious or benign. In performance testing, the malicious class

was considered the positive class since the goal of detection was

to identify malicious instances, while the benign class was

considered the negative class.

For the dimensionality reduction portion, two sets of reduced

corpuses were created. One set of reduced vectors was created by

reducing the dimensionality of each vector to 500 features via

mutual information. The other set of feature vectors was reduced

to 200,000 features via mutual information before being further

reduced to 500 features using the method of random projection

proposed by Achlioptas [34]. The mutual information

preprocessing phase was used to remove the influence of

insignificant features and also speed up the overall reduction

process.

Both of these data sets were then used to train and test classifiers

created using the naïve Bayes, Instance-based learner, Support

Vector machines, and J48 decision tree classification algorithms,

as well as boosted versions of the naïve Bayes, support vector

machine, and J48 algorithms.

Each of the classifiers was trained and tested using 10-fold cross

validation. That is, the data set was separated into 10 disjoint sets

of the same size and one set was used as the testing set while the

other nine combined were used to train the classifier. This process

was conducted ten times using each subset as the test set only

once, and then the results from the different runs were averaged.

The results obtained from these experiments are presented below.

4. RESULTS
Both data sets created classifiers which produced promising

results. In tables 2 and 3 below, the true positive (TP) rate

represents the number of malicious instances classified as

malicious; the false positive (FP) rate represents the number of

benign instances classified as malicious; the area under the curve

(AUC) measure represents the area under the receiver operating

characteristic (ROC) curve generated by the classifier; the

accuracy represents the number of instances correctly classified

by the classifier; and the classifiers are listed in descending order

of accuracy.

The true positive rate gives us an idea of how effective a classifier

is at detecting malicious executables, however, we need to take

into account the false positive rate to ensure that our classifier

does not flag too many benign executables as malware. That is, in

a real computing environment there will be many more benign

executables than malware, therefore a detection solution which

generates too many false alarms can severely disrupt a computer

user‟s experience, potentially making the solution more

unattractive than the problem.

Table 2. Performance values of classifiers produced with

mutual information-reduced data set
Method TP Rate FP Rate AUC Accuracy %

Boosted J48 0.967 0.034 0.994 96.67

SVM 0.966 0.037 0.965 96.49

Boosted SVM 0.966 0.037 0.965 96.49

Boosted N. Bayes 0.954 0.041 0.986 95.63

IBk, k = 5 0.977 0.075 0.99 95.50

J48 0.954 0.053 0.939 95.13

Naïve Bayes 0.796 0.113 0.898 83.42

Considering the classifiers that were trained and tested with the

data set reduced by mutual information, the performance results

were similar to those obtained by Kolter [5]. Boosted J48 had the

highest accuracy and area under the ROC curve (AUC) at 96.67%

and 0.994 respectively, and lowest false positive rate at 0.034. The

SVM and boosted SVM classifiers also performed very well with

results close to that of the boosted J48 classifier. The other

classifiers all performed comparably except for the naïve Bayes

classifier which had the worst scores of the mutual information set

of classifiers, just as in Kolter‟s results, with a true positive rate of

0.796, a false positive rate of 0.113, an AUC of 0.898, and an

accuracy of 83.42%. It should be noted that though the instanced-

based learner had the highest true positive rate and AUC, it also

had the second highest false positive rate, thus reducing its overall

accuracy.

Table 3. Performance values of classifiers produced with

random projection-reduced data set
Classifier TP Rate FP Rate AUC Accuracy %

SVM 0.986 0.025 0.981 98.15

Boosted SVM 0.972 0.034 0.986 96.98

IBk, k = 5 0.997 0.097 0.993 95.75

Boosted N. Bayes 0.945 0.053 0.973 94.57

Boosted J48 0.927 0.074 0.979 92.66

J48 0.892 0.166 0.841 86.75

Naïve Bayes 0.85 0.282 0.829 79.47

In contrast to the results from the mutual information group of

classifiers, the classifiers generated from the data set reduced via

random projection produced results which promoted some

classifiers while demoting others. In this group of classifiers, the

SVM classifier performed the best with a TP rate of 0.986, an FP

rate of 0.025, an AUC of 0.981, and an overall accuracy of

98.15%, nearly 2% higher than the best performer in the mutual

information group, the boosted J48 classifier. The boosted SVM

and the IBk classifier both had improved results, except for the

increased FP rate of the IBk classifier, following in 2nd and 3rd

place respectively. The boosted J48 classifier performed worse on

the random projected data set, only besting the J48 and naïve

Bayes classifiers; the naïve Bayes classifier retained its last place

position, performing worse than its mutual information-trained

counterpart, with a reduced overall accuracy of 79.47%.

5. CONCLUSIONS
The results obtained in the experiments above demonstrate that

the dimensionality reduction technique of random projection can

be used to improve the performance of some data mining

classification algorithms. Though the performance of the J48

classifier, naïve Bayes classifier, and their boosted counterparts

was reduced when using data instances reduced via random

projection as opposed to mutual information, the SVM, boosted

SVM, and IBk classifiers experienced an increase in performance.

This resulted in the SVM classifier exhibiting the best

performance out of all the classifiers across both data sets. This

may be due to the fact that SVM and k-nearest-neighbors

algorithms utilize a vector space model in the classification

process. That is, they are capable of taking advantage of the pair-

wise distance preservation characteristic of the random projection

technique.

In addition, while the mutual information reduced data set only

selected the top 500 n-grams based on information gain as its

feature set, the random projected data set created 500 new features

incorporating the attributes of a set of 200,000 n-grams. The

added information of the other 199,500 n-grams may have also

contributed to the increased performance of the SVM and IBk

classifiers. The boosted SVM classifier did not outperform the

SVM classifier but Kolter suggests that this may be due to the

stability of SVMs in classification tasks [6]. Bauer and Kohavi

also suggest that boosting can adversely affect stable classifiers

[42].

6. ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S. Air Force,

Air Force Research Laboratory under Award No. FA9550-10-1-

0289.

7. REFERENCES
1. [1] Hoffman, L. J. Rogue Programs: Viruses, Worms and Trojan

Horses. Van Nostrand Reinhold Co., New York, 1990.

2. [2] Arnold, W. and Tesauro, G. Automatically Generated Win32

Heuristic Virus Detection. In Proceedings of the 2000

International Virus Bulletin Conference (Sep. 2000).

3. [3] SYMANTEC CORPORATION. Symantec Internet Security

Threat Report: Trends for 2010. Symantec Corporation, 2010.

4. [4] Kolter, J. Z. and Maloof, M. A. Learning to Detect Malicious

Executables in the Wild. In Proceedings of the 10th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining (Seattle, WA Aug. 2004), ACM Press, 470-

478.

5. [5] Kolter, J. Z. and Maloof, M. A. Learning to Detect and

Classify Malicious Executables in the Wild. The Journal of

Machine Learning Research, 7 (2006), 2721-2744.

6. [6] Reddy, D. K. S. and Pujari, A. K. N-gram Analysis for

Computer Virus Detection. Journal in Computer Virology, 2,

3 (2006), 231-239.

7. [7] Atkison, T. Applying Randomized Projection to Aid

Prediction Algorithms in Decting High-Dimensional Rogue

Applications. In Proceedings of the 47th ACM Southeast

Conference (Clemson, SC, USA 2009).

8. [8] Atkison, T. Using Random Projections for Dimensionality

Reduction in Identifying Rogue Applications. Mississippi

State University, Starkville, MS, USA, Aug. 2009.

9. [9] Atkison, T. Aiding Prediction Algorithms in Detecting High-

Dimensional Malicious Applications Using a Randomized

Projection Technique. In Proceedings of the 48th Annual

ACM Southeast Conference (Oxford, MS, USA Apr. 2010).

10. [10] Atkison, T. and Durand, J. Using Randomized Projection

Techniques to Aid in Detecting High-Dimensional

Malcious Applications. In Proceedings of the 2011 ACM

Southeast Conference (Kennesaw, GA, USA 2011).

11. [11] Atkison, T., Durand, J., Flores, J., Kraft, N., and Smith, R.

Using Executable Slicing to Improve Rogue Software

Detection Algorithms. International Journal of Secure

Software Engineering, 2, 2 (2011), 53-64.

12. [12] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R.

N-gram-based Detection of New Malicious Code. In

Proceedings of the 28th Annual International Computer

Software and Applications Conference (Sep. 2004), 41-42.

13. [13] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R.

Detection of New Malicious Code using N-grams

Signatures. In Proceedings of the 2nd Annual Conference

on Privacy, Security and Trust (New Brunswick, Canada

2004), 193-196.

14. [14] Kephart, J. O., Sorkin, G. B., Arnold, W. C., Chess, D. M.,

Tesauro, G. J., and White, S. R. Biologically Inspired

Defenses Against Computer Viruses. In Proceedings of the

14th International Joint Conference on Artificial

Intelligence (San Francisco, CA 1995), 985-986.

15. [15] Marceau, C. Characterizing the Behavior of a Program

using Multiple-Length N-grams. In Proceedings of the 2000

Workshop on New Security Paradigms (Ballycotton, County

Cork, Ireland 2000).

16. [16] Santos, I., Penya, Y. K., Devesa, J., and Bringas, P. N-

grams-based File Signatures for Malware Detection. In

Proceedings of the 11th International Conference on

Enterprise Information Systems (2009), 317-320.

17. [17] Perdisci, R., Lanzi, A., and Lee, Wenke. McBoost:

Boosting Scalability in Malware Collection and Analysis

Using Statistical Classification of Executables. In

Proceedings of the Computer Security Applications

Conference (Dec. 2008), 301-310.

18. [18] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information

Retrieval. Addison Wesley, Harlow, 1999.

19. [19] Bellman, R. Adaptive Control Processes: A Guided Tour.

Princeton University Press, 1961.

20. [20] Tesauro, G., Kephart, J. O., and Sorkin, G. B. Neural

Networks for Computer Virus Recognition. IEEE Expert,

11, 4 (Aug. 1996), 5-6.

21. [21] Keselj, V., Peng, F., Cercone, N., and Thomas, C. N-gram-

based Author Profiles for Authorship Attribution.

Computational Linguistics, 3 (2003), 255-264.

22. [22] Witten, I. H. and Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, San

Francisco, CA, 2005.

23. [23] Yang, Y. and Pedersen, J. O. A Comparative Study on

Feature Selection in Text Categorization. In Proceedings of

the 14th International Conference on Machine Learning (

1997), 412-420.

24. [24] Goel, N. and Bebis, G. Face Recognition Experiments with

Random Projection. In Proceedings of SPIE 2005 (Orlando,

FL, USA Mar. 2005).

25. [25] Sallis, P. and MacDonell, S. Software Forensics: Old

Methods for a New Science. In Proceedings of Software

Engineering: Education and Practice (1996), 367-371.

26. [26] Gray, A. R., Sallis, P., and MacDonell, S. Software

Forensics: Extending Authorship Analysis Techniques to

Computer Programs. University of Otago, New Zealand,

Dec. 1997.

27. [27] Mannila, H. and Seppnen, J. K. Finding Similar Situations

in Sequences of Events. In Proceedings of the First SIAM

International Conference on Data Mining (2001).

28. [28] Bingham, E. and Mannila, H. Random Projection in

Dimensionality Reduction: Applications to Image and Text

Data. In Proceedings of the 7th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining (2001), 245-250.

29. [29] Kaski, S. Dimensionality Reduction by Random Mapping:

Fast Similarity Computation for Clustering. In Proceedings

of the 1998 IEEE International Joint Conference on Neural

Networks (Anchorage, AK, USA May 1998), 413-418.

30. [30] Papadimitriou, C. H., Raghavan, P., Tamaki, H., and

Vempala, S. Latent Semantic Indexing: A Probabilistic

Analysis. Journal of Computer and System Sciences, 61, 2

(2000), 217-235.

31. [31] Kurimo, M. Indexing Audio Documents by using Latent

Semantic Analysis and SOM. In Oja, E. and Kaski, S., eds.,

Kohonen Maps. Elsevier, 1999.

32. [32] Lin, J. and Gunopulos, D. Dimensionality Reduction by

Random Projection and Latent Semantic Indexing. In

Proceedings of the Text Mining Workshop at the 3rd SLAM

International Conference on Data Mining (2003).

33. [33] Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R.,

Iannaccone, G., and Lakhina, A. Detection and

Identification of Network Anomalies using Sketch

Subspaces. In Proceedings of the 6th ACM SIGCOMM

Conference on Internet Measurement (New York, NY, USA

2006).

34. [34] Achlioptas, D. Database-friendly Random Projection. In

Proceedings of ACM Symposium on the Principles of

Database Systems (2001), 274-278.

35. [35] Linial, N., London, E., and Rabinovich, Y. The Geometry

of Graphs and some of its Algorithmic Applications.

Combinatorica, 15, 2 (1995), 215-245.

36. [36] Johnson, W. B. and Lindenstrauss, J. Extensions of

Lipschitz Mappings into a Hilbert Space. Contemporary

Mathematics, 26 (1984), 189-206.

37. [37] Bourgain, J. On Lipschitz Embedding of finite Metric

Spaces in Hilbert Space. Israel J. Math, 52 (1985), 46-52.

38. [38] Singhal, A. Modern Information Retrieval: A Brief

Overview. Bulletin of the Technical Committee on Data

Engineering, 24, 4 (2001), 35-43.

39. [39] Chen, X., Francia, B., Li, M., McKinnon, B., and Seker, A.

Shared information and Program Plagiarism Detection.

IEEE Transactions on Information Theory, 50, 7 (2004),

1545-1551.

40. [40] Lewis, David. Naive (Bayes) at Forty: The Independence

Assumption in Information Retrieval. In Nedellec, Claire

and Rouveirol, Celine, eds., Machine Learning: ECML-98.

Springer Berlin/Heidelberg, 1998.

41. [41] Quinlan, J. R. C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993.

42. [42] Bauer, E. and Kohavi, R. An Empirical Comparison of

Voting Classification Algorithms: Bagging, Boosting, and

Variants. Machine Learning, 36, 1 (Jul. 1999), 105-139.

