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ABSTRACT 

This research is part of a continuing effort to show the viability of 

using random projection as a feature extraction and reduction 

technique in the classification of malware to produce more 

accurate classifiers. In this paper, we use a vector space model 

with n-gram analysis to produce weighted feature vectors from 

binary executables, which we then reduce to a smaller feature set 

using the random projection method proposed by Achlioptas, and 

the feature selection method of mutual information to produce two 

separate data sets. We then apply several popular machine 

learning algorithms including J48 decision tree, naïve Bayes, 

support vector machines, and an instance-based learner to the data 

sets to produce classifiers for the detection of malicious 

executables. We evaluate the performance of the different 

classifiers and discover that using a data set reduced by random 

projection can improve the performance of support vector 

machine and instance-based learner classifiers.   

Categories and Subject Descriptors 

D.2.0 [Software Engineering]: General – Protection mechanisms 

General Terms 

Security 

Keywords 

Malicious software detection, information retrieval, n-gram 

analysis, random projection, data mining 

1. INTRODUCTION 
Since the discovery of the “Elk Cloner” computer virus “in the 

wild” in 1981[1], the rate of creation and spread of malicious 

software applications has increased prodigiously. With the advent 

of the Internet, all types of malicious software or “malware” have 

an easily accessible and effective medium for propagation to 

victims‟ machines. In defense, software tools such as anti-viruses 

and intrusion detection systems have been developed by the Cyber 

Security community to detect and disable attacks from such 

malicious applications. 

  

Traditionally, these defense tools used signature-based detection 

which involves comparing the byte sequence of a suspected 

malicious application to the signatures of known threats, stored in 

a virus signature database. That is, signature-based detection tools 

are incapable of detecting new and previously unknown threats 

which do not contain any known signatures. This limitation leaves 

signature-based anti-virus tools completely ineffective against 

“zero-day” viruses until their signature database, aka virus 

definitions, have been updated with the signatures of the new 

threats.  

There have been several research efforts into methods of detection 

to mitigate some of the difficulties inherent in dealing with new 

and unknown threats. Some of these approaches are based in the 

realms of information retrieval and data mining such as [2-5] and 

have yielded some promising results with respect to identifying 

whether a program is malicious. However, many of these research 

efforts are faced with the “curse of dimensionality” [2], which 

refers to the challenges of computing in a high-dimensional space. 

Dimensionality reduction techniques such as principal component 

analysis, latent semantic indexing and random projection allow 

the effects of the “curse of dimensionality” to be mitigated by 

moving from a high dimensional space to a lower-dimensional 

space.  

This research is part of a continuing effort to show the viability of 

using random projection as a feature extraction and reduction 

technique in the classification of malware to produce more 

accurate classifiers. 

2. BACKGROUND 
Below, we give a brief description of the information retrieval 

technique of n-gram analysis which we use to produce feature 

vectors from executable instances, as well as an overview of the 

dimensionality reduction techniques used to reduce the dimension 

of those feature vectors. 

2.1 N-gram Analysis 
The information retrieval technique of n-gram analysis has proven 

to be a valuable tool for feature extraction in several research 

efforts which focus on the detection and/or classification of 

malicious applications [2-17]. An n-gram is any substring of 

length n [18]. Since n-grams overlap, they do not just capture 

statistics about substrings of length n, but also implicitly capture 

frequencies of longer substrings [12]. In our experiments, n-grams 

are extracted from the hexadecimal byte strings of executable 

files, and one gram corresponds to one byte in hexadecimal form.  

Due to the high dimensionality of n-gram feature sets, these 

research efforts are often subject to the “curse of dimensionality.” 
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[19] Many of these research efforts use some form of 

dimensionality reduction, such as mutual information in [5], to 

curb these large feature sets in order to mitigate the effects of the 

“curse of dimensionality.”  

Kephart et al. referenced the fields of Information Retrieval and 

Artificial Intelligence, while working with n-grams and Artificial 

Neural Networks (ANNs) in their research of the malware 

detection problem [14, 20]. Abou-Assaleh et al. applied the 

Common N-Gram (CNG) analysis method [21], known for its 

success in automatic authorship attribution and text clustering, to 

the malware detection problem [12, 13].  

Santos et al. [16] introduced a similar approach to Abou-Assaleh 

et al. [13], using n-gram signatures to represent malicious and 

benign programs. The n-gram signature for a program or file 

consisted of every n-gram present in that file, and signatures for 

1000 malicious and 1000 benign binary files were extracted to 

create the corpus; 66% percent was used for training and 34% for 

testing. Santos et al. also used the k-Nearest-Neighbor algorithm 

to classify signatures of new instances against signatures in the 

corpus. 

Kolter used the information retrieval technique of n-gram analysis 

to create binary feature vectors of malicious and benign programs, 

which were used with machine learning algorithms to classify 

unknown program instances [4, 5]. To create the feature vector for 

a program, n-grams were extracted from the hexadecimal byte 

sequences of the program, with each byte being considered a 

gram. Several machine learning algorithms were applied to the 

feature set, using the Wakaito Environment for Knowledge 

Analysis (WEKA) [22]. These classification algorithms were the 

k-Nearest-Neighbors Instance-based learner (IBk), a Naïve Bayes 

classifier, a support vector machine (SVM), a decision tree (J48), 

and “boosted” versions of the last three classifiers [5]. These 

classifiers were trained and tested using stratified 10-fold cross-

validation, with n-grams of length 4 and feature vectors of the top 

500 n-grams. Table 1 presents the AUC results for the algorithms. 

Table 1. Classifier AUC Results with 95% Confidence 

Interval from Kolter [5] 

Method AUC 

Boosted J48 0.9958±0.0024 

SVM 0.9925±0.0033 

Boosted SVM 0.9903±0.0038 

IBk, k = 5 0.9899±0.0038 

Boosted Naïve Bayes 0.9887±0.0042 

J48 0.9712±0.0067 

Naïve Bayes 0.9366±0.0099 

2.2 Mutual Information 
Mutual information has been used as a basis for feature selection 

in the field of machine learning. Due to the enormity of the set of 

n-grams extracted from a program, Kolter introduced a 

dimensionality reduction processing step using mutual 

information to reduce the dimensionality of the program feature 

vectors. The most relevant of these n-grams were selected using 

the average mutual information measure from Yang et al. [23], 

also known as the Information Gain, calculated as: 

where Ci is the ith class, v j is the value of the jth attribute, P(vj,Ci) 

is the proportion that the jth attribute has the value vj in the class 

Ci, P(v j) is the proportion that the jth n-gram takes the value vj in 

the training data, and P(Ci) is the proportion of the training data 

belonging to the class Ci [5]. 

2.3 Random Projection 
Malicious application detection, following the genre of 

information retrieval, suffers from the problem that the data, once 

processed, is encoded in extremely high dimensions. This high-

dimensional data limits the kind and amount of analysis that can 

be preformed. Though the feature selection technique of mutual 

information has been very popular in reducing the feature sets of 

such research efforts, another dimensionality reduction technique 

which has been recently applied to the field of malware detection 

is random projection.  

Unlike the mutual information method used by Kolter [5], which 

selects a subset of the total feature set, random projection is a 

feature extraction technique which embeds a high dimensional 

feature set into a “low-dimensional subspace using a random 

matrix whose columns have unit length” [24], thus creating a 

completely new set of features. This type of projection attempts to 

retain the maximum amount of information embedded in the 

original feature set while substantially reducing the number of 

features required. By reducing the number of features, greater 

amounts of analysis can be performed. The core concept has been 

developed out of the Johnson-Lindenstrauss lemma [25] which 

states that any set of n points in a Euclidean space can be mapped 

to ℝt where t =  with distortion ≤ 1 + ε in the distances. 

Such a mapping may be found in random polynomial time. A 

proof of this lemma can be found in [26]. 

Random projection has been used in several other research efforts. 

Mannila et al. used random projection to aid in finding similarities 

between sequences of events, specifically looking at how to better 

handle network alarms within the telecommunication field [27] . 

Bingham et al. utilized random projection in image and text 

information retrieval and showed that random projection offered 

greater accuracy and computational savings than more traditional 

dimensionality reduction techniques such as principal component 

analysis and singular value decomposition [28].  

Kaski [29]  utilized random projection in a text retrieval 

application using WEBSOM, a graphical self-organizing map, to 

overcome the computational costs of traditional dimensionality 

reduction methods like principal component analysis on high-

dimensional data sets. Kaski was able to improve the 

classification and topic separation performance of his tool after 

using random projection over the previous methods used.  

A few research efforts have used random projection with the 

dimensionality reduction method of latent semantic indexing [30-

32], including Papadimitriou et al. who successfully used random 

projection as a preprocessing step to the latent semantic indexing 

method and improved the asymptotic running time of their overall 

system from O(mnc) to O(m(log2n + clogn)), where m and n are 

the dimensions of the matrix and c is the average number of terms 

per document [30].  

Goel et al. used random projection in the field of facial 

recognition, which yielded comparable results to that of principal 

component analysis while being computationally less expensive 

and data independent [24]. 

Li et al. applied random projections to the field of network 

anomaly detection to more precisely identify the underlying 

causes of network anomalies [33]. More specifically, their 

technique, called “Defeat”, allowed for the identification of the 
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IP-flow(s) responsible for the anomaly as opposed to the 

traditional method which only identified the origin-destination 

flow. This was accomplished by creating multiple random 

projections or “sketches” of global network traffic in the form of 

IP-flows, which were then mined for information using the 

“subspace” method. A voting procedure was also applied to the 

detection results from the sketches to increase detection rate while 

reducing false alarms. Based on an evaluation of a week-long 

trace, Defeat displayed detection rates comparable to previous 

methods and detected nearly 200 more anomalies. Li et al. 

concluded “that random projections appear to preserve properties 

of traffic data that are important for the effectiveness of the 

subspace method.” [33] 

Atkison was the first to introduce the random projection feature 

extraction technique to the realm of malicious application 

detection [7-11]. In a recent paper [10], Atkison et al. used a 

vector space model with n-gram analysis to produce weighted 

feature vectors from binary executables, similarly to Kolter [5]. 

Every dimension of these vectors represented a unique n-gram 

which could be extracted from the corresponding executable. 

These feature vectors were then used as input to random 

projection algorithms in order to produce feature vectors of a 

reduced dimension.  

Three methods for random projection were used to reduce the 

feature vectors: 1) matrix multiplication with a random matrix of 

unit vectors with elements generated with a Gaussian distribution 

of mean 0 and standard deviation of 1; 2) Achlioptas‟ matrix 

multiplication with a random matrix of values of 0, +1, or -1 

following a probability distribution of 2/3, 1/6 and 1/6 

respectively [34]; 3) and random set projection based on the 

Linial-London-Rabinovich algorithm [35], which is an extension 

of the Johnson-Lindenstrauss [36] and Bourgain [36] algorithms.  

To test the efficacy of using random projection in this particular 

context of malware detection, Atkison extracted n-gram feature 

vectors, with n-grams of length 3, 5, and 7, from a data set of 

1544 Windows formatted binary executables: 709 benign files and 

835 malicious files. Different corpuses of reduced feature vectors 

were created using each of the different random projection 

techniques mentioned above, each containing feature sets of 500, 

1000, and 1500 features. For each of these corpuses, Atkison 

compared each document feature vector to every other feature 

vector and classified the document vector based on the classes of 

the most similar vectors in the corpus.  

The Cosine similarity measure was used to determine the 

similarity between feature vectors over the range of threshold 

values from 0 to 1.0 in increments of 0.05. Cosine similarity “has 

the nice property that it is 1.0 for identical vectors and 0.0 for 

orthogonal vectors.” [38] The experimental results were very 

promising and produced true positive rates for prediction as high 

as 0.95 and false positive rates as low as 0.02 [10], comparable to 

results of previous research efforts using the reduction technique 

of mutual information. 

3. EXPERIMENT 
In our experiments, we follow the methodology used by Kolter [5] 

and use some well-known data mining algorithms to produce 

classifiers to detect whether an executable is malicious or benign. 

However, we use random projection as the dimensionality 

reduction technique in order to compare the performance of 

random projection against the established mutual information 

method. The following provides a description of the components 

of the experimental methodology that was used to detect 

malicious applications using the information retrieval technique of 

n-gram analysis and the dimensionality reduction technique of 

random projection, as well as descriptions of the various data 

mining algorithms used. 

3.1 Data Set 
The data set that was compiled together for the experiments 

described in this section consisted of 1622 Windows formatted 

binary executable files.  None of the files in the data set were 

larger than 950 KB.  Of these files, 303 were extracted from a 

fresh installation of the Windows XP operating system, another 

406 were extracted from a fresh installation of the Windows Vista 

operating system, and another 78 were extracted from a fresh 

installation of the Windows 7 operating system. All of these sets 

were obtained by installing the respective operating system in a 

virtual environment that was installed on a commodity PC.  These 

virtual environments were not connected to the Internet and 

therefore provided a safe location. This ensured that it would 

allow for application extraction without the worry of malicious 

infiltration during the gathering phase of the research effort. This 

process provided a total of 787 files that were in the data set and 

that were considered benign. The remaining 835 files for the data 

set were malicious Trojan horse applications that were 

downloaded from various websites on the Internet including 

http://www.trojanfrance.com and http://vx.netlux.org.  

A Trojan horse, similar to the myth, may provide a useful service 

(for example, a calculator or Notepad) but once executed performs 

harmful actions. Symantec reported in their bi-annual threat report 

for the first half of 2005, that “six of the top ten spyware 

(information leakage) programs were delivered to their victim by 

being bundled with some other program.” [30] Trojans are a very 

popular and effective way of infiltrating user systems. To give an 

idea of their prevalence, in 2009, Trojans accounted for 6 of the 

top 10 new malicious code families detected; 51 percent of the 

volume of the top 50 malicious code samples reported; four of the 

top 10 staged downloaders; and eight of the top 10 threat 

components downloaded by modular malicious software [39].  

3.2 Data Mining Algorithms 
The following classification algorithms were used in the 

performance evaluation of random projection as an effective 

dimensionality reduction technique in the detection of malicious 

applications. All classifiers used in this research were trained and 

tested using the Waikato Environment for Knowledge Analysis 

(WEKA) machine learning software suite [22], with 10-fold cross 

validation on the training data set. 

3.2.1  Instance Based Classifier 
The instance-based classifier, also known as a lazy learner, uses 

one of the most simple classification algorithms. It learns by 

storing the vectors of training examples and their corresponding 

labels, and classifies an unknown instance by giving it the label of 

the most similar instance in the training set. The Euclidean 

distance is usually used to measure the similarity or dissimilarity 

of two instances. Instance-based learners are also known as 

„nearest neighbor‟ or „k-nearest-neighbors‟. The k-nearest-

neighbor algorithm classifies an instance by a majority vote of the 

labels of the k most similar instances in the training set. In our 

experiments we used an instance-based learner (IBk) with a k of 5 

as was used in Kolter‟s experiments, using Euclidean distance as 

the distance metric.  

3.2.2 Naive Bayes Classifier 
The naive Bayes classifier is a probabilistic classifier based on the 

Bayesian theorem and is popular in the fields of Information 



retrieval and Machine learning. This classifier uses the prior 

probability of a class P(Ci) and the conditional probability of each 

feature attribute for the specified class, P(fj|Ci), in order to 

determine the posterior probability that an unknown instance 

belongs to a particular class given its feature vector, P(Ci, f) 5]. 

The prior probabilities of the classes and the conditional 

probabilities of feature attributes for each class are estimated by 

counting the number of occurrences in the training data of each 

class and the attribute values for each class. The classifier 

determines the class of an unknown instance by selecting the class 

with the highest posterior probability. In order to simplify the 

modeling of P(fj, Ci), it is assumed that the conditional 

probabilities of each attribute are independent [40]. 

                                                               (2) 

3.2.3 Decision Tree 
Decision trees or classification trees consist of internal nodes 

which represent instance attributes, and leaf nodes which 

represent the possible classes or labels of an instance. In order to 

classify an unknown instance, the classifier starts at the root node 

and follows the branch to a node which has an attribute value or 

range of values that corresponds to the attribute value of the 

instance in question. The tree is traversed in this fashion until a 

leaf node is reached, and then the instance is classified as the label 

of that leaf node. A decision tree is created by considering all the 

instances in the training set and selecting a feature attribute which 

best splits the data set into its respective classes. The attribute that 

was previously selected is then removed from future consideration 

and the process is repeated recursively on each data subset. The 

last attribute split creates the leaf nodes which are labeled based 

on a majority vote of the class labels of its elements. For attribute 

selection, most implementations of the decision tree use an 

information gain-based measure such as gain ratio in the C4.5 

algorithm developed by Quinlan [41]. J48 is a Java 

implementation of the C4.5 algorithm available in WEKA [22].         

3.2.4 Support Vector Machines 
Support vector machines (SVMs) produce a binary linear 

classifier which is able to separate a data set into two distinct 

classes, the positive and the negative class. The method works by 

using a kernel function to map the feature vectors of the data 

instances into a higher dimension so that the two classes of 

instances can be easily separated by a straight line or hyper plane. 

The hyper plane is described by the equation              , 

where      is a vector or set of weights perpendicular to the hyper 

plane;    is a point belonging to the hyper plane; and be is a 

threshold value which determines the offset of the hyper plane 

from the origin, along     . The algorithm strives to choose a      and 

b which create an optimal hyper plane that maximizes the margin 

between itself and the closest instances of each class. The idea is 

to increase the dimension of the training data to get the instances 

of one class on one side of the hyper plane and the next class on 

the other side. Classification is performed by mapping an 

unknown instance into the higher feature dimension and labeling 

it based on which side of the hyper plane it appears; the instance 

is labeled as the positive class if              , or as the 

negative class if otherwise. WEKA implements the sequential 

minimal optimization (SMO) algorithm for training SVMs.    

3.2.5 Boosted Classifiers 
Boosting is a way of combining several classifiers to produce a 

better classifier. Research shows that ensemble classifiers usually 

perform better than individual classifiers, and are able to improve 

regardless of how weak the individual classifier is [42]. Just like 

in Kolter [5], we used the AdaBoost (Adaptive Boosting) method 

implemented in WEKA to boost the performance of each of the 

aforementioned classifiers except the instance-based learner due 

to computational expense. AdaBoost works by iteratively training 

several models of a classifier and reweighting the data set 

instances in favor of instances which were misclassified 

previously so subsequent classifiers can better predict the classes 

of those instances. During classification of an unknown instance, 

the different models and their respective weights are used to select 

the class with the highest weight. 

3.3 Experimental Design 
This section describes the overall design of this experiment. 

Following the methodology of Kolter [5], an n-gram size of 4 was 

used to create feature vectors from the executables in the data set. 

A binary value-weighting scheme was used for this effort, 

whereby feature vectors were created for each document in the 

data set by assigning a „1‟ to a vector dimension attribute if the 

corresponding n-gram was present in the executable or „0‟ if it 

was not. Feature vectors with a dimension of 25,368,317 were 

created from the data set using n-grams of length 4. These feature 

vectors were labeled with their corresponding class of either 

malicious or benign. In performance testing, the malicious class 

was considered the positive class since the goal of detection was 

to identify malicious instances, while the benign class was 

considered the negative class.  

For the dimensionality reduction portion, two sets of reduced 

corpuses were created. One set of reduced vectors was created by 

reducing the dimensionality of each vector to 500 features via 

mutual information. The other set of feature vectors was reduced 

to 200,000 features via mutual information before being further 

reduced to 500 features using the method of random projection 

proposed by Achlioptas [34]. The mutual information 

preprocessing phase was used to remove the influence of 

insignificant features and also speed up the overall reduction 

process.  

Both of these data sets were then used to train and test classifiers 

created using the naïve Bayes, Instance-based learner, Support 

Vector machines, and J48 decision tree classification algorithms, 

as well as boosted versions of the naïve Bayes, support vector 

machine, and J48 algorithms.  

Each of the classifiers was trained and tested using 10-fold cross 

validation. That is, the data set was separated into 10 disjoint sets 

of the same size and one set was used as the testing set while the 

other nine combined were used to train the classifier. This process 

was conducted ten times using each subset as the test set only 

once, and then the results from the different runs were averaged. 

The results obtained from these experiments are presented below. 

4. RESULTS 
Both data sets created classifiers which produced promising 

results. In tables 2 and 3 below, the true positive (TP) rate 

represents the number of malicious instances classified as 

malicious; the false positive (FP) rate represents the number of 

benign instances classified as malicious; the area under the curve 

(AUC) measure represents the area under the receiver operating 

characteristic (ROC) curve generated by the classifier; the 

accuracy represents the number of instances correctly classified 

by the classifier; and the classifiers are listed in descending order 

of accuracy.  

The true positive rate gives us an idea of how effective a classifier 

is at detecting malicious executables, however, we need to take 



into account the false positive rate to ensure that our classifier 

does not flag too many benign executables as malware. That is, in 

a real computing environment there will be many more benign 

executables than malware, therefore a detection solution which 

generates too many false alarms can severely disrupt a computer 

user‟s experience, potentially making the solution more 

unattractive than the problem.  

Table 2. Performance values of classifiers produced with 

mutual information-reduced data set 
Method TP Rate FP Rate AUC Accuracy % 

Boosted J48 0.967 0.034 0.994 96.67 

SVM 0.966 0.037 0.965 96.49 

Boosted SVM 0.966 0.037 0.965 96.49 

Boosted N. Bayes 0.954 0.041 0.986 95.63 

IBk, k = 5 0.977 0.075 0.99 95.50 

J48 0.954 0.053 0.939 95.13 

Naïve Bayes 0.796 0.113 0.898 83.42 

Considering the classifiers that were trained and tested with the 

data set reduced by mutual information, the performance results 

were similar to those obtained by Kolter [5]. Boosted J48 had the 

highest accuracy and area under the ROC curve (AUC) at 96.67% 

and 0.994 respectively, and lowest false positive rate at 0.034. The 

SVM and boosted SVM classifiers also performed very well with 

results close to that of the boosted J48 classifier. The other 

classifiers all performed comparably except for the naïve Bayes 

classifier which had the worst scores of the mutual information set 

of classifiers, just as in Kolter‟s results, with a true positive rate of 

0.796, a false positive rate of 0.113, an AUC of 0.898, and an 

accuracy of 83.42%. It should be noted that though the instanced-

based learner had the highest true positive rate and AUC, it also 

had the second highest false positive rate, thus reducing its overall 

accuracy. 

Table 3. Performance values of classifiers produced with 

random projection-reduced data set  
Classifier TP Rate FP Rate AUC Accuracy % 

SVM 0.986 0.025 0.981 98.15 

Boosted SVM 0.972 0.034 0.986 96.98 

IBk, k = 5 0.997 0.097 0.993 95.75 

Boosted N. Bayes 0.945 0.053 0.973 94.57 

Boosted J48 0.927 0.074 0.979 92.66 

J48 0.892 0.166 0.841 86.75 

Naïve Bayes 0.85 0.282 0.829 79.47 

In contrast to the results from the mutual information group of 

classifiers, the classifiers generated from the data set reduced via 

random projection produced results which promoted some 

classifiers while demoting others. In this group of classifiers, the 

SVM classifier performed the best with a TP rate of 0.986, an FP 

rate of 0.025, an AUC of 0.981, and an overall accuracy of 

98.15%, nearly 2% higher than the best performer in the mutual 

information group, the boosted J48 classifier. The boosted SVM 

and the IBk classifier both had improved results, except for the 

increased FP rate of the IBk classifier, following in 2nd and 3rd 

place respectively. The boosted J48 classifier performed worse on 

the random projected data set, only besting the J48 and naïve 

Bayes classifiers; the naïve Bayes classifier retained its last place 

position, performing worse than its mutual information-trained 

counterpart, with a reduced overall accuracy of 79.47%. 

5. CONCLUSIONS 
The results obtained in the experiments above demonstrate that 

the dimensionality reduction technique of random projection can 

be used to improve the performance of some data mining 

classification algorithms. Though the performance of the J48 

classifier, naïve Bayes classifier, and their boosted counterparts 

was reduced when using data instances reduced via random 

projection as opposed to mutual information, the SVM, boosted 

SVM, and IBk classifiers experienced an increase in performance. 

This resulted in the SVM classifier exhibiting the best 

performance out of all the classifiers across both data sets. This 

may be due to the fact that SVM and k-nearest-neighbors 

algorithms utilize a vector space model in the classification 

process. That is, they are capable of taking advantage of the pair-

wise distance preservation characteristic of the random projection 

technique.  

In addition, while the mutual information reduced data set only 

selected the top 500 n-grams based on information gain as its 

feature set, the random projected data set created 500 new features 

incorporating the attributes of a set of 200,000 n-grams. The 

added information of the other 199,500 n-grams may have also 

contributed to the increased performance of the SVM and IBk 

classifiers. The boosted SVM classifier did not outperform the 

SVM classifier but Kolter suggests that this may be due to the 

stability of SVMs in classification tasks [6]. Bauer and Kohavi 

also suggest that boosting can adversely affect stable classifiers 

[42]. 
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