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Abstract— This paper presents a method of adaptive traffic
signal control using time series forecasting and real time
signal phase adjustment. The situation in which a green light
turns red before passing an intersection is a familiar and
frustrating experience to drivers. The proposed forecast based
traffic signal adjustment attempts to predict and alleviate this
situation by extending green lights in real time. The procedure
and thought process of the implementation of the system are
discussed in this paper along with results from a simulation
on three intersections over the course of a week. Experimental
results have shown an increase in traffic efficiency based off
of a decrease in total waiting vehicles and time.
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1. Introduction
Traffic intersections are a popular form of traffic control allow-

ing for a great amount of control. It is up to traffic engineers

to time the traffic signals in order for traffic to flow efficiently

across each lane. The characteristics of traffic volume at each

intersection can vary, so there needs to exist a way to tailor sig-

nal timings to optimize each intersection. Manual assessment

and timing of signals can be time consuming and error prone,

considering the fact that traffic behavior may change over time.

Congestions formed by inefficiencies in signal timing lead to

wasted driving time, and raise environmental as well as safety

concerns. Cutting down on waiting times will lead to less

exhaust emissions, and reduce the number of accidents caused

by drivers running red lights. Our proposed method attempts

to increase the efficiency of traffic intersections by finding

areas of improvements within existing signal timings, and

dynamically adjusting signal phases to allow more vehicles

to pass, leading to decreased waiting times and stoppages.

Advancements in traffic controller technology and the avail-

ability of vehicle detection sensors provide the opportunity

for a more adaptive, efficient traffic assignment system. The

system developed for this research aims to predict incoming

vehicles and optimize signal timings to allow for more vehicle

throughput and waiting time reduction at an intersection. The

only tools needed for this system are packages found in R

and Python, both of which are free and open source. The goal

is to integrate this new system to run natively inside traffic

controllers.

During heavy traffic hours, delays that are inherent in traffic

intersections lead to back ups and congestion. A common

occurrence in intersections is the arrival of vehicles right

as a green light turns red. This problem can be lessened

using a two-part adaptive traffic signal control method. First,

the system must be able to predict the arrival of cars at

an intersection. By reading sensor data provided by a traffic

controller, the daily activity of an intersection was able to be

reconstructed down to the second. This transformed data can

be used to perform a time series forecast. Predictions can then

be used in a real-time simulation in which signals are adjusted

through the extension of green lights.

2. Background
There have been several efforts to apply forecasting methods

and techniques to the problem of traffic signal control with

varying levels of success. Included in these are Yi’s et al.

[1] work in comparing multivariate time series with univariate

time series and K-nearest neighbor (KNN) nonparametric

regression model. Wang’s et al. [2] use Multiscale multifractal

analysis of traffic signals to uncover additional more complex

information in the time series of the signals. Vlahogianni et

al. [3] looked at and compared several methods for short

term traffic forecasting algorithms. The authors developed a

framework for short-term forecasting models. Earlier work by

Smith et al. [4] implemented a nonparametric regression model

and applied it to two different sites, producing a forecasting

model for estimating traffic flow 15 minutes in the future.

In order to solve the nonlinear problem of traffic optimization,

research involving computational intelligence began as early as

1977 by Pappis and Mamdani [5]. They created a fuzzy logic

traffic controller, which Chou and Teng [6] later expanded

upon to incorporate multiple lanes and junctions. Spall and

Chin [7] demonstrated a neural network based approach to

produce an optimal signal timing strategy. Evolutionary com-

putation has also been incorporated to the traffic problem using

a genetic algorithm by Ceylan et al [8].

3. The System
The entire procedure can be broken down into three main

steps. First, the data is cleaned into a form that can easily

be worked with. Then, a time series of vehicle counts is input

into R for forecasting. Finally, the forecasts are used to adjust

the signal phases of a designated test day through a real time

simulation. The data for these experiments were gathered at

three different intersections along highways AL-69 and US-

11 in Tuscaloosa, AL. These intersections all have advanced

34 Int'l Conf. Data Mining |  DMIN'17  |

ISBN: 1-60132-453-7, CSREA Press ©



built-in data logging capabilities through Siemens traffic signal

controllers.

3.1 Data Cleaning

Before the forecasting of vehicles can occur, the raw data must

be cleaned. Data taken from a traffic controller is read as lines

of events with corresponding timestamps, type of event, and

lane number. By extracting traffic light and detector change

events, a table of time bins with vehicle counts and traffic

signal state can be constructed for each lane. Representing

the data in this way allows for easy data manipulation and an

easy to read visualization of traffic behavior. The time bins

can be input into R to perform time series forecasting, or read

in by a program for the simulation of traffic signal adjustment.

Data for each day is broken down into two sections. The five

hour periods between 6-11 a.m. and 3-8 p.m. were used to

capture both morning and evening rush hours. Time periods

outside of this range are unlikely to experience congestion at

the intersections used in the experiment, and were therefore

ignored to save computational time during testing.

Table 1

EXAMPLE OF RAW DATA

SignalID Timestamp EventCode EventParam
63069008 2016-12-11 00:00:00.2000000 82 11
63069008 2016-12-11 00:00:00.2000000 43 6
63069008 2016-12-11 00:00:00.4000000 81 11
63069008 2016-12-11 00:00:00.4000000 44 6
63069008 2016-12-11 00:00:00.9000000 81 1
63069008 2016-12-11 00:00:00.9000000 44 2
63069008 2016-12-11 00:00:01.5000000 82 6

Table 2

EXAMPLE OF RAW DATA TRANSFORMED INTO TIME BINS

Timestamp Vehicle Count Signal State
2016-12-12 18:29:30 2 G
2016-12-12 18:29:40 1 G
2016-12-12 18:29:50 2 G
2016-12-12 18:30:00 4 G
2016-12-12 18:30:10 3 G
2016-12-12 18:30:20 2 G
2016-12-12 18:30:30 4 G
2016-12-12 18:30:40 1 G
2016-12-12 18:30:50 0 R
2016-12-12 18:31:00 2 R

Table 1 shows how the events from the traffic controller are

stored in a .csv file. Table 2 shows an example of how the

time bins are stored as text after the conversion of the traffic

data. In each row, the first item gives time, the second gives

vehicle count, and the third gives a signal state.

The intersections in this research contained both magnetic

advance detectors and induction loops. Magnetic advance de-

tectors, specifically called induction or search coil magnetome-

ters, work by detecting changes in the magnetic field when a

metal object, such as a car, passes. Therefore, these detectors

are placed before the stop bar as they cannot detect stopped

cars [9]. Induction loops work by embedding a wire loop

into the pavement connected to an oscillator. The presence

of a vehicle causes a decrease in the loop inductance which

changes the frequency of loop cycles. When changes are

detected above a threshold, a signal is sent to the traffic

controller to indicate that a vehicle is present [10].

When conducting vehicle counts on a lane, magnetic advance

detectors work very accurately. Adding a lag time to the

detector reading gives an accurate timestamp of when a vehicle

arrives at an intersection. An induction loop, however, cannot

distinguish the number of vehicles that passed as accurately

as a magnetic advance detector. In the case that vehicles pass

through the stop bar bumper-to-bumper, the induction loop

may not be able to distinguish between different vehicles.

Since it is common that vehicles pile up in this manner during

a red light, the number of seconds the loop stays on once the

light turns green is counted and divided by 2.5 in order to

estimate the number of vehicle arrivals during a red light.

3.2 Creating the forecast

Massaging the raw traffic controller data into a table of time

bins essentially provides a time series of vehicle counts and

traffic light states. Forecasting models can be used with this

time series in order to predict the presence of vehicles in the

future. When performing time series analysis, it is important

to understand how the data behaves in regards to seasonality,

trend, and noise. In the case of traffic flow counts, it is

expected to have multi-seasonality in daily and weekly activity.

This is due to morning and evening rush hours, as well as the

Monday to Friday work week. A gradual change in vehicle

counts may likely occur in the data depending on changes in

population size and business activity in an area. Noise in the

data is introduced due to sensor downtime and road accidents.

When adopting a forecasting method, these components must

be taken into consideration.

The decision of the period length for the time series is dictated

by the meaningfulness of the resulting forecasts. Forecasting

vehicle counts for each hour in the day can produce accurate

results; however, this hourly information is harder to incorpo-

rate into the decision-making of a signal adjustment algorithm.

A short period length of 10 seconds can be used as a base unit

of time extension when optimizing at a per green-red cycle

level.

Hyndman’s “forecast” package in R, provides several different

forecasting model implementations from which to choose.

Common approaches to forecasting seasonal data are to use a

seasonal ARIMA model or an exponential smoothing method

such as Holt-Winters. Williams and Lester [11] showed the

effectiveness of the seasonal ARIMA model in fitting traffic

flow data. However, the related functions provided did not sup-

port time series forecasting of non-standard seasonal periods.

Because of this, the STL method, developed by Cleveland et

al. [12], was used as it provides the advantage of allowing
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periods of any length. The specific model used relies on the

STL method to remove seasonality from the series, and applies

a non-seasonal exponential smoothing model with additive

errors. The result is then re-seasonalized to a given period.

The STL method captures daily patterns in the data, but in

order to deal with the multi-seasonal weekly patterns, a day

of the week is chosen in advance and the following days are

extracted and spliced together. For example, if the test day is

on a Monday, the previous Mondays will be spliced together

into the training set.

Fig. 1

EXAMPLE FORECAST PLOT

Fig. 2

COMPARISON OF FORECAST TO ACTUAL VALUES

The STL decomposition method produced reasonably accurate

forecasts of vehicle count. Figure 1 shows the results of the

forecast of a morning rush hour period on a northbound lane

using a training set of five days, with time series period lengths

of 10 seconds. In Figure 2, the forecasted values from the blue

section of Figure 1 are overlaid onto actual vehicle counts from

the same period. Lanes with high traffic volume and magnetic

advance detectors tended to produce more accurate forecasts.

Lanes with low traffic volume and loop detectors performed

worse, due to lack of activity, or susceptibility to noise.

3.3 Signal adjustment simulation

To simulate the behavior of the method in real time, the

algorithm is run on a series of 1 second time bins taken from

the test day. The signal states of these time bins are adjusted

based on the forecast values and a set of conditions as the

algorithm walks through each bin.

Fig. 3

DIAGRAM LABELING AN 8-PHASE INTERSECTION

Figure 3 illustrates a 4-way intersection with a standard

numbering scheme for each lane. Using this scheme, a conflict

lane matrix is defined. An example of an element in the matrix

would be M [2] = {1, 4, 7, 3, 8}, as none of these lanes can

be green while lane 2 is green. With the conflict matrix and

forecasted bins read, the algorithm can begin to walk through

the test data time bins.

The adjustment of the signal phases is a deterministic problem;

therefore, the algorithm is nested in a loop that runs for each

of the eight lanes. For each lane, the algorithm walks through

each time bin and stops when a green light is about to turn

red. The algorithm checks the forecasted bins to see if more

vehicles are predicted to arrive in its current lane than vehicles

from all other conflict lanes. If this is true, the green light will

be extended to the end of the forecasted time bin. As a result,

vehicles that would normally have to wait an entire red light

cycle can pass the intersection without any stoppage. Since

the signal adjustment algorithm runs in linear time, it would

perform well in a real time scenario. It is also important to

consider latency issues in a traffic control system. Thus, fast

decision-making should be a priority.

Figure 4 shows a visualization of the changes made to a busy

lane over the course of a five-hour period. Each value in the

x-axis corresponds to one complete green to red cycle. The

red lines indicate the end of red phases, and the green lines

for the end of green phases. The dotted blue line in between

36 Int'l Conf. Data Mining |  DMIN'17  |

ISBN: 1-60132-453-7, CSREA Press ©



Fig. 4

VISUALIZATION OF GREEN EXTENSION

shows the changes in green phases as they are extended to

allow more cars through the light.

4. Results
In order to evaluate the improvements of the method, a

function was created that counts the total number of vehicles

that had to stop at a red light, and the total seconds waited for

each vehicle. Comparing these totals before and after running

the algorithm provides the basis of our evaluation.

Tables 3 through 8 are designed to gauge the effects of the

method in traffic efficiency. Improvements in vehicle stoppages

and wait times are indicated by row pairs, which are taken for

each day of the test week. Each column of values represents

the improvement metric for one of the eight lanes in the

intersection, as depicted in Figure 3. Improvement values are

calculated as a percent decrease in stopped vehicles or total

wait time from values taken before and after the method.

4.1 Results for Intersection 1

Table 3

INTERSECTION 1 - AM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle 0.0 10.8 0.0 0.0 0.0 10.6 0.0 0.0
Time 0.0 17.3 -0.6 0.0 0.0 17.9 -0.3 -1.2

12/12
Vehicle 0.0 9.2 0.0 0.0 0.0 11.9 -0.8 0.0
Time 0.0 14.2 -0.3 -0.4 0.0 18.1 -0.4 -0.1

12/13
Vehicle 0.0 16.2 0.0 0.0 0.0 17.6 -0.3 0.1
Time -0.1 26.0 -0.6 -0.4 0.0 29.6 -1.0 0.1

12/14
Vehicle 0.0 10.0 0.0 -0.7 0.0 17.6 -0.8 0.0
Time 0.0 17.6 -1.4 -0.6 0.0 28.0 -2.0 -0.1

12/15
Vehicle 0.0 6.5 0.0 0.0 0.0 13.2 0.0 0.0
Time -0.4 9.5 -0.7 -0.2 -1.0 23.9 -1.1 0.0

12/16
Vehicle 0.0 13.8 -0.8 1.4 0.0 13.9 0.0 0.0
Time -0.1 24.3 -1.0 2.5 0.0 22.8 -1.0 -0.2

12/17
Vehicle 0.0 6.0 0.0 0.0 0.0 13.8 0.0 0.0
Time 0.0 11.2 0.0 -0.3 0.0 23.1 -0.2 -0.5

Table 4

INTERSECTION 1 - PM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle 0.0 6.3 0.0 0.0 0.0 13.1 0.0 0.0
Time 0.0 10.7 0.0 0.0 0.0 19.2 0.0 0.0

12/12
Vehicle 0.0 13.7 0.0 -0.6 0.0 15.1 -1.7 0.0
Time 0.0 24.3 -2.2 -0.9 0.0 23.3 -2.5 -0.3

12/13
Vehicle 0.0 8.0 0.0 0.0 0.0 20.3 0.0 0.0
Time 0.0 15.4 -0.3 -0.4 0.0 35.2 -0.3 0.0

12/14
Vehicle 0.0 11.5 0.0 -3.5 0.0 15.9 -0.6 0.0
Time 0.0 22.1 -0.4 -0.5 0.0 31.1 -0.7 0.1

12/15
Vehicle 0.0 12.8 0.0 -0.7 0.0 14.3 -0.5 0.0
Time 0.0 20.8 -0.2 -0.5 0.0 28.1 -1.3 0.0

12/16
Vehicle 0.0 13.3 -3.1 0.0 0.0 15.4 -0.9 0.0
Time 0.0 24.7 -2.0 -0.6 0.0 29.9 -1.1 0.0

12/17
Vehicle 0.0 6.8 0.0 0.0 0.0 16.3 0.0 0.0
Time 0.0 12.2 0.0 -0.1 0.0 24.1 0.0 -0.1

Table 3 represents the changes for intersection 1 (along

Highway AL-69) during the morning rush hour period between

6-11 am. Lane 2 and 6 show consistent improvement around

the 10-20% range. These are the north and southbound lanes,

which experience the most traffic. On the contrary, every

other lane experienced a negligible decrease. However, lane

4 noticed a slight increase on Friday of that week. Table 4

shows values for the same intersection during the afternoon

rush hour period between 3-8 pm. The amount of change is

similar to that of the morning period. While lanes 1 and 5

show no change, the maximum decreases in performance have

slightly risen in lanes 3 and 4. However, Lanes 2 and 6, the

lanes with the most traffic, had a marked improvement. Lane

2 improved 6-24%, and Lane 6 improved 13-35%.

4.2 Results for Intersection 2

Table 5

INTERSECTION 2 - AM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle -0.4 3.8 0.3 -1.1 0.0 10.4 -0.3 0.0
Time -0.3 5.5 -0.5 -0.4 -0.1 15.3 -1.0 -0.2

12/12
Vehicle 0.0 10.3 -2.2 0.0 0.0 2.3 -0.8 0.0
Time 0.0 17.5 -1.7 -0.1 0.0 4.1 -1.7 -0.2

12/13
Vehicle 0.0 11.4 -1.0 0.0 0.0 4.5 -1.1 0.0
Time 0.0 19.3 -2.4 -0.1 0.0 9.7 -2.6 -0.2

12/14
Vehicle 0.0 8.8 -0.4 0.0 0.0 5.0 -0.6 0.0
Time 0.0 14.3 -1.4 -0.1 0.0 10.4 -1.4 -0.1

12/15
Vehicle 0.0 7.3 -0.8 -0.9 0.3 5.5 -1.7 0.0
Time 0.0 13.1 -1.9 -0.1 0.7 11.7 -2.0 -0.1

12/16
Vehicle 0.7 7.2 -0.9 0.0 0.0 3.5 -0.9 0.0
Time 1.1 12.0 -1.5 0.0 0.0 7.7 -2.2 -0.2

12/17
Vehicle 0.0 4.1 0.0 0.0 -0.4 11.2 -1.3 0.0
Time -0.1 7.6 -1.6 -0.1 -0.1 18.4 -1.8 -0.1
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Table 6

INTERSECTION 2 - PM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle 0.4 8.1 -0.7 0.0 -0.5 9.2 -1.2 0.0
Time -0.1 12.1 -2.7 -4.7 -0.7 13.2 -3.7 -1.3

12/12
Vehicle 0.0 6.5 -1.5 -2.9 0.0 4.6 -1.9 -8.3
Time -0.3 10.4 -3.6 -0.6 0.0 7.6 -3.6 -0.2

12/13
Vehicle 0.0 7.3 -1.4 -2.6 0.2 4.2 -1.4 0.0
Time -0.1 12.1 -2.7 -0.5 0.6 6.6 -3.1 -1.8

12/14
Vehicle 0.0 6.1 -1.2 0.0 0.0 5.6 -1.5 -11.1
Time -0.1 10.8 -2.9 -0.9 0.0 9.5 -2.5 -0.2

12/15
Vehicle 0.0 7.1 -1.2 0.0 0.0 4.2 -1.0 0.0
Time 0.0 10.7 -2.2 -0.3 0.0 7.2 -2.6 0.0

12/16
Vehicle 0.0 7.6 -0.9 0.0 0.0 3.3 -1.3 0.0
Time -0.2 11.4 -3.4 0.0 0.0 5.3 -3.6 0.0

12/17
Vehicle 0.0 15.8 -1.7 0.0 -0.8 8.2 -1.1 0.0
Time -0.7 23.7 -4.1 -0.6 -0.4 13.8 -11.8 0.0

Tables 5 and 6 show changes at intersection 2 (along Highway

AL-69). While lanes 2 and 6 showed improvements, similar

to intersection 1, the averages sit closer to 10%. The effects of

other lanes seem to be around the same as intersection 1. The

values for intersection 2 show two interesting outliers. First,

there is a significant jump in performance on the Saturday

of that week in both morning and afternoon hours. Second,

on that same day, there is an 11% increase in waiting time.

One possibility is that a sudden jump in traffic volume was

experienced on that day, which affected those lanes. The

preferential bias toward lanes with expected heavy traffic can

become more evident from such an event.

4.3 Results for Intersection 3

Table 7

INTERSECTION 3 - AM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle -0.4 3.8 0.3 -1.1 0.0 10.4 -0.3 0.0
Time -0.3 5.5 -0.5 -0.4 -0.1 15.3 -1.0 -0.2

12/12
Vehicle 0.0 10.3 -2.2 0.0 0.0 2.3 -0.8 0.0
Time 0.0 17.5 -1.7 -0.1 0.0 4.1 -1.7 -0.2

12/13
Vehicle 0.0 11.4 -1.0 0.0 0.0 4.5 -1.1 0.0
Time 0.0 19.3 -2.4 -0.1 0.0 9.7 -2.6 -0.2

12/14
Vehicle 0.0 8.8 -0.4 0.0 0.0 5.0 -0.6 0.0
Time 0.0 14.3 -1.4 -0.1 0.0 10.4 -1.4 -0.1

12/15
Vehicle 0.0 7.3 -0.8 -0.9 0.3 5.5 -1.7 0.0
Time 0.0 13.1 -1.9 -0.1 0.7 11.7 -2.0 -0.1

12/16
Vehicle 0.7 7.2 -0.9 0.0 0.0 3.5 -0.9 0.0
Time 1.1 12.0 -1.5 0.0 0.0 7.7 -2.2 -0.2

12/17
Vehicle 0.0 4.1 0.0 0.0 -0.4 11.2 -1.3 0.0
Time -0.1 7.6 -1.6 -0.1 -0.1 18.4 -1.8 -0.1

Table 8

INTERSECTION 3 - PM

Improvement %
P1 P2 P3 P4 P5 P6 P7 P8

12/11
Vehicle 0.0 6.9 -1.2 -9.4 0.0 7.9 -1.3 -50.0
Time 1.5 11.8 -4.3 -1.6 0.0 13.4 -4.6 -2.2

12/12
Vehicle 0.0 4.5 -0.7 -0.6 0.0 4.3 -1.0 0.0
Time -0.1 7.3 -2.5 -0.2 0.0 7.5 -2.2 0.2

12/13
Vehicle 0.0 3.6 -0.8 -1.1 0.0 5.4 -1.5 0.0
Time 0.0 6.1 -2.2 -0.4 0.0 9.2 -2.8 0.0

12/14
Vehicle 0.5 1.6 -1.1 0.0 0.0 4.9 -0.9 0.0
Time 1.0 2.2 -2.1 0.7 0.0 8.5 -2.2 0.0

12/15
Vehicle 0.0 2.8 -1.2 -1.0 0.0 5.7 -1.6 0.0
Time 0.0 5.4 -2.4 -0.1 0.0 10.4 -2.1 0.0

12/16
Vehicle 0.0 7.9 -2.4 0.0 0.0 5.5 -2.3 0.0
Time 0.0 12.1 -2.5 0.0 0.0 9.0 -2.7 0.0

12/17
Vehicle 0.0 6.0 -2.0 -6.7 0.0 6.5 -1.8 0.0
Time 0.0 10.3 -3.8 -2.6 0.0 12.1 -4.2 0.0

Tables 7 and 8 represent changes for intersection 3 (along

Highway US-11). Results from the morning period mimic

those of intersection 2. However, the afternoon period of this

intersection found the smallest changes in improvement. An

outlier of -50% is found for vehicle stoppages on lane 8 on

Sunday of that week. Upon inspection, this is due to the change

from two stoppages to three. Because of this, it is important

to consider the actual values, as a means of evaluation.

4.4 Results for Aggregate Intersections

Table 9

AGGREGATE - AM

Intersection 1 Intersection 2 Intersection 3
Vehicle
Diff

Time
Diff (s)

Vehicle
Diff

Time
Diff (s)

Vehicle
Diff

Time
Diff (s)

12/11 34 650 71 2373 77 1468

12/12 136 3730 225 10139 133 4751

12/13 246 9475 292 12915 140 4604

12/14 247 6916 248 10587 162 6035

12/15 145 4454 222 9903 147 4901

12/16 190 7094 182 8522 149 4586

12/17 44 1061 131 5637 210 4859

Table 10

AGGREGATE - PM

Intersection 1 Intersection 2 Intersection 3
Vehicle
Diff

Time
Diff (s)

Vehicle
Diff

Time
Diff (s)

Vehicle
Diff

Time
Diff (s)

12/11 121 3852 233 12780 213 7452

12/12 306 10313 142 9539 170 7619

12/13 275 10268 171 12285 178 8467

12/14 216 8288 266 19329 131 6152

12/15 245 8990 198 12953 98 5072

12/16 213 6770 177 11918 304 19816

12/17 148 4748 423 22940 240 10662

In order to get a better understanding the results, Tables 9 and

10 have been constructed to show the exact number of vehicles

stoppage and wait time reductions. Table 9 shows the results

of running our method through the same morning rush hour

period. Each row represents values totaled for that day. Three

different intersections were tested from the same period, each

having two values, giving six total columns. In each column

pair for a given intersection, the first column represents the
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number of cars that would have had to stop at a red light if

no changes occurred. The second column shows the difference

in waiting times of cars that had to stop at a red light. Table

10 uses the same format, however, the results are from the

afternoon period of 3-8pm. Keep in mind that these values

have been aggregated from all lanes for the given five hour

durations.

In all cases, the number of vehicles that had to stop, and

the total amount of time waited decreased as a result of our

method. The results of Tables 3-8 show that some intersections

benefitted more than others. For example, intersection 1 saw

the most gains in percentage improvement. However, Tables

9 and 10 indicate that intersection 2 had the highest instances

of improvements. Therefore, the values in each set of tables

are relative to what is being compared. Tables 9 and 10 give

a clearer picture in evaluating the effect of the time of day.

Results were generally better during the afternoon period, as

more cars are flowing through the system.

Differences in the amount of improvement is heavily linked

to the day-to-day activity of each intersection. Taking a look

at each intersection, it became clear that some lanes undergo

little to no changes. Lanes with less traffic volume contain

lower forecasted arrivals along with fewer green to red cycle

changes, allowing few opportunities for signal adjustment to

take place. For this same reason, weekdays tended to show

greater instances of improvement compared to weekends.

5. Future Work
The goal of future developments would be to improve the

decision-making of the signal adjustment algorithm, and ex-

plore more advanced models in prediction. The system is at

a point in which all intermediary steps are automated through

scripts. This would allow traffic controllers using the system

to continually adapt to trends and patterns overtime with

minimal supervision. The automation also allows for quick

testing of adjustments made to different parameters in order to

discover ways to improve the system. For example, we tested

our method using time bins of 5, 10, and 15 seconds, and

the results from the simulation showed that time bins of 10

seconds provided a sweet spot in forecast bin length.

Currently, the signal adjustment step only uses local traffic

data to apply a greedy algorithm in deciding to extend green

phases. In the future, we hope to find ways of communicat-

ing information between a traffic network to create a more

sophisticated decision making model.

6. Conclusion

The current solution to traffic management can be improved

upon by utilizing a more adaptive decision based model.

Minimizing the oversaturation of roads and inefficiencies of

fixed signal timings reduces the amount of time wasted, while

providing environmental and safety benefits. Utilizing time
series forecasting, our system was able to identify and alleviate

some of the inefficiencies found on real traffic data.
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