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Abstract—Securing the critical infrastructure power grid is
one of the biggest challenges in securing cyberspace. In this en-
vironment, control devices are spread across large geographic
distances and utilize several mediums for communication.
Given the required network topology of the power grid several
entry points may exist that can be utilized for compromising a
control network. This article explores a cyber event detection
scheme based on the Grubbs’ test to classify univariate values.
The test is conducted only after a power system instance has
been classified as containing a cyber-event. The classification
of each instance is made via principal component analysis and
the Hotelings T2 value. A Monte Carlo simulation is used to
determine a set of converging power system instances and is
based on the Newton-Rhapson method to solve the power flow
equations of a 5 bus power system. Results indicate successful
classification at a rate of 90%.

Index Terms—SCADA, PLC, control systems, state estima-
tion, intrusion detection

I. INTRODUCTION

Perhaps one of the biggest challenges of securing cy-
berspace, is the ability to secure the critical infrastructure
power grid. This is in part due to the inter-connective nature
of the power grid and how every aspect of modern life
is driven by the notion of always having power available.
The power grid is composed of a meshed network of geo-
graphically distributed industrial control systems (ICS) that
span large distances and utilize multiple communication
mediums and protocols. Such interlacement, unbeknownst
to the utility provider or independent system operator (ISO),
can provide an individual or nation-state with malintent
direct access to the control local area network. Once the
control LAN has been breached, control decisions can be
made that are outside the intended operation specifications,
the most harsh being a full denial of service attack. The
critical infrastructure power grid has recently seen an
increase in the implementation of networked solid state
devices. The key goal of such influxes is to increase the
number of reporting nodes in the Wide Area Measurement
System (WAMS) for the purpose of billing, state estimation,
grid health, and for the efficient delivery of electricity to its
consumers. However, security becomes a concern when the
control decisions being implemented in the power system
are based on the values being reported by the nodes in the
WAMS.

In a recent effort known as Project Shine, over 7,200
control devices were found to be directly connected to
the World Wide Web [1]. These startling results indicate
that critical control devices have and will continue to be
accidentally connected in a manner that is inconsistent with
the so called ’air-gap’ separation. Other possible and, in
some cases, historically documented breaches into power
systems are conducted via insider threat, the use of a zero-
day attacks, or unpatched system attacks. The approach
presented in this article aims at solving the detection of
attacks against power systems using a context specific
approach.

The approach presented in this article uses the Grubbs’
Test to identify the reporting power system node that
was compromised. This analysis is made possible by first
using a transformation that identifies if an instance contains
a cyber-event. Specifically, principal component analysis
is used as the approach for transforming power system
instances, and the Hotelling T2 metric is used for the
classification of each newly observed instance. Once an in-
stance is labeled as suspect, the state parameters contained
within that instance are compared against the variances of
previously observed or trusted state parameters using the
normalized residual test, Grubbs’ Test, in an effort that
identifies the node or control device that was the target
of the intrusion. The identification scheme is applied to
the data resulting from a Monte-Carlo simulation using an
iterative solution to the power flow equations. The iterative
solution used for the development of system data is the
Newton-Rhapson method and is known to be the most
common approach for solving the power flow equations
[2].

Details and model assumptions of the power grid are
described in Section II and Section III. An overview of
the residual test, Grubbs’ test, and the dimensional trans-
formation technique, principal component analysis (PCA),
is given in Section IV. The cyber-event model outlined in
Section III-B describes how the instances are created such
that they represent a possible malicious attack on the power
system or a failed sensor. Lastly, the results of the cyber-
event detection scheme are presented in Section V followed
by future work and conclusions.
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Fig. 1. Basic Power System Application Feedback Model

II. THE POWER GRID

A basic model, derived from similar ones presented in
[3], [4], of a power system application with state feedback
is presented in Figure 1. The feedback model shown is
governed by the energy management system (EMS) which
during an event will instruct the SCADA system to send
control commands to the power system application [5]. An
event can consist of a fault, i.e. a down power line, or a
disturbance as modest as a customer turning on a lamp.
Events change the operating conditions of the application
and, if drastic enough, will cause the EMS to take imme-
diate action to protect the system from catastrophic failure.
In instances where the event does not cause immediate
harm to the power system the EMS will remain idle or
change control parameters to more economically provide
power to customers. The purpose of this feedback interface
is for constant monitoring and control of the power system
application in an effort to ensure the constant and stable
generation and delivery of power.

The primary steady state algorithms that determine the
stability and reliability of the critical infrastructure power
grid are: 1) Power Flow, 2) Optimal Power Flow, and 3)
State Estimation. The power system challenge is to try to
solve the nonlinear power balance equations in near real
time given a percent of system values. The system state
uses Kirchoff’s Law at each power system bus throughout
the system in question. Kirchoff’s Law states that the sum
of the powers entering a bus must be zero. The active and
reactive components of the power flow equations in polar
representation form from bus i to bus j can be determine
by solving Equations 1 and 2.

0 = ∆Pi = P injeci − Vi
n∑
i=1

VjYijcos(θi − θj − ϕij) (1)

0 = ∆Qi = Qinjeci − Vi
n∑
i=1

VjYijsin(θi − θj − ϕij) (2)

where, P injeci and Qinjeci are the injected powers into
each bus, Vi is the voltage on bus i and Yij is element
ij of the admittance matrix. Optimal power flow is the
result of finding the desired power system state variables
based on one or multiple cost functions. Examples of cost
functions include minimization on power losses and fuel

costs of generation. State estimation describes the process
of estimating the state of the power system based on an
incomplete picture of the system being observed. With
state estimation, system parameters are measured using
intelligent electronic devices (IEDs) and are reported back
to the SCADA system.

A. State Estimation and Power Flow

Power flow analysis uses an iterative method, in most
cases the Newton-Rhapshon method [2], for solving the
nonlinear algebraic power flow equations, Equations 1 and
2 [7]. Convergence is said to happen when the error or
mismatch drops below a certain threshold. For instance,
the error stopping point used in this approach is εs = 0.01.
This means that the absolute values of both the active
and reactive power mismatches all had to be below 0.01
to be considered a converging instance. Also, for this
examination convergence had to occur within 15 iterations
or the instance was declared a non-converging instance. On
average the 5 bus systems converged within 4 iterations.
The extreme of 15 iterations was selected as a stopping
point given that if the system did not converge within 15
iterations it is likely for that given set of inputs the system
cannot exist. The fact of non-convergence corresponds to
the likelihood that the power system being observed does
not exist at that given set of inputs. For a more detailed
description of the iterative solutions to the power flow
problem the reader is encouraged to view the following
referenced text [2], [7], [8].

III. SIMULATION MODELS

A. Power System Model

To demonstrate the identification of cyber-events a rel-
atively simple power system was selected. Multiple in-
stances of this model were conducted using the Newton-
Rhapson method to solve the nonlinear algebraic power
flow equations. Using the 5 Bus power system [8] shown in
Figure 2 a series of power flow simulations were conducted.
The system shown is a 100 MVA 138 kV system with
the swing Bus positioned at Bus #1 or the Slack Bus.
Generators are connected at Bus #1 and Bus #2. Loads
are connected to every Bus in this model and are identified
by that Bus’s number. Table I shows the impedances used
for the six transmission lines considered in this system
model. A snapshot of the Bus input data is shown in Table
II. This information serves as the input parameters to the
power flow equations and with the successful convergence
of the Newton-Rhapson method the other variables can be
determined. Bus #3 is a voltage controlled Bus and is part
of the input variable set. The slack Bus is simulated in such
a way that given the inputs shown in Figure 2 it picks up
the remaining slack to supply the required load.

B. Cyber-Event Model

The cyber-event model used for this detection approach is
two-fold in that it represents two possibilities that can occur
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Fig. 2. Five Bus One Line Diagram [8]

TABLE I
5 BUS TRANSMISSION LINE PARAMETERS [8]

Bus - Bus Line Length (mi) R X B
1 - 2 40 0.042 0.168 0.041
2 - 5 30 0.031 0.126 0.031
2 - 3 30 0.031 0.126 0.031
3 - 4 80 0.084 0.336 0.082
3 - 5 50 0.053 0.210 0.051
4 - 5 60 0.063 0.252 0.061

in a power system. Event #1 can be considered to be a non-
malicious incident in which the controller or sensor in the
field making the measurement breaks or becomes damaged
as a result of natural causes. Some examples of this may
include natural disasters, faulty equipment, or wear on the
device over the years. Event #2 can be classified as an actual
malicious event in which an attacker purposely launches an
attack against the control system. Examples of this include
the falsification or spoofing of data values reported from a
smart meter as revealed by Brinkhaus et al [9]. This work
currently makes no distinction of the two events only that it
is able to determine that an event occurred. Once detection
has occurred that instance then can be further investigated
and the actual cause of the event can be determined.

The approach presented in this article assumes that both
Event#1 and Event#2 will produce a state value of zero at
the origin of the event. This assumption provides an initial
starting point for the development of the detection scheme
presented in this article. Furthermore the cyber-event model
assumes that only one cyber-event occurs per instance and
hence forth makes no distinction between the two events
based on the developed identification scheme. An alarmed
instance will only show that either event could have been
the cause of the cyber-event.

To simulate these types of events a random instance
from data matrix X was selected. This random instance
vector

−→
Xr serves as the basis for the event simulation.

Currently a total of ten events are simulated each event
corresponds to an instance or row in a new suspicious data
set X′. For the first event, first row in the suspicious set, the
variable x1 of

−→
Xr is changed to a zero representing either

a failure or an attack occurring at the voltage reading on
Bus #1. This is done while holding all other values equal to
the corresponding variables of the random vector

−→
Xr. For

each subsequent event instance the next variable is changed

TABLE II
5 BUS INPUT SNAPSHOT

Bus # Type V Delta PG QG PL QL
1 0 - 0 - - 0.65 0.3
2 1 - - 0 0 1.150 0.6
3 2 1.020 0 1.8 - 0.7 0.4
4 1 - - 0 0 0.7 0.3
5 1 - - 0 0 0.850 0.4

while holding all variables consistent with the values from−→
Xr. All simulated events occur at the bus voltages and the
real power at each of the 5 loads.

IV. IDENTIFICATION APPROACH

A. Principal Component Analysis

In any determinable system there is a finite number of
driving forces which governs how the system behaves. By
observing grouping phenomenon in the data it is possible
to replace a group of variables with a single new variable,
greatly reducing the redundancy in the data. Principal
component analysis (PCA) is a quantitative process for
achieving a system simplification. A decrease in redun-
dancy and an overall simplification of the data is made
possible through a transformation into a new vector space
where all the basis vectors are independent of each other.
The basis vectors in the new dimensional space are called
principal components [10]. PCA is based on the statistics of
a training set to linearly transform the set in such a way that
the new primary basis are independent of each other. The
linear transformation used is based on a covariance matrix
which is defined by the patterns found in the training set.
PCA finds a linear transformation such that

Y = WX (3)

where X and Y are mxn matrices related by a transforma-
tion W. Based on Equation 3 the following variables can
be defined: wi are the rows of W, xi are the columns of
X, and yi are the columns of Y.

The row vectors of W {w1, ..., wm} are called the
principal components of x. Before PCA can be applied to a
data set it is customary to first preform sanitization on the
data. This sanitization guarantees any unintended biassing
of the new components. After centering the normalized
covariance SX was determined using the unbiased estimator
for normalization.

SX =
1

n− 1
XXT (4)

This produced a covariance matrix with dimensions mxm
with the diagonal terms representing the variances and off-
diagonal terms representing the covariances of data matrix
X. The closer the off-diagonal terms are to zero the closer
the variables represented by the indices of SX are to being
completely uncorrelated. Conversely, the higher these off-
diagonal terms are the more correlated the two variables
are. Also the higher the off diagonal terms are the higher
the redundancy is in the data matrix X.
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The linear transformation produced by PCA selects a
transformation W such that the principal components or
basis vectors wi produced are completely orthonormal.
Orthonormality is ensured due to the fact that the dot
product of each basis vector with another produces the
Kronker delta function, wi ·wj = δij . In addition to being
orthonormal, the basis vectors are ordered based on the
amount of variance that is being accounted for by that
basis vector or principal component. This corresponds to
the fact that PCA will produce a transformation matrix
W such that the variance of data matrix X is mostly
accounted for by principal component w1. As hinted at
in the previous section the lower the diagonal terms of
the covariance matrix are the lower the redundancy is in
the data. Therefore the solution to PCA seeks a covariance
matrix SY such that the off-diagonal terms are zero where,

SY =
1

n− 1
YYT (5)

Plugging Equation 3 into Equation 5 we have

SY =
1

n− 1
W(XXT )WT (6)

With this solution to PCA it can be shown that the principal
components of data matrix X are the eigenvectors of XXT

or are the rows of W. Also, the ith diagonal term of SY

is the variance of X projected onto pi.

B. Classification of New Power System Instances
The Naive Bayes classifier Hotelling T2 metric, T 2 =

n(X − µ)′S−1(X − µ), is utilized for detection and is
an extension of the t-test used to determine the differ-
ence between means of two independent variables. This
extension allows for a statistical measure of the multivarite
distance of each instance from the center of the data set
in the reduced dimensional space. The result allows for
the detection of instances that occur at far distances from
the data center as defined by data matrix X. The detection
approach presented in this article is a probabilistic approach
in describing how likely an instance is to occur. Instances
that fit to the dynamics of the data matrix X or control
set have a high likelihood of occurring while instances
that lie on the boundaries are less likely to occur. It can
also be shown that the Hotelling’s T2 value follows the F
distribution as defined by Equation 7 [11]

T 2 ∼ (n− 1)p

(n− p)
Fp,n−p(x) (7)

where p is the number of principal components retained
and n is the number of instances in the sample space.
Because over 90% of the variance is accounted for by
the first 8 principal components, a value of p = 8 was
used. The F cumulative probability distribution function
returns the cumulative probability of obtaining a value x
for given parameters p and n. Rearranging Equation 7 we
can calculate that the probability of observing at least T2

is P (≥ T 2) = 1− Fp,n−p(z) where,

z = T 2 (n− p)
p(n− 1)

This allows for a probabilistic metric to determine whether
or not an instance is in control. If the instance is in control
then it follows the dynamics as defined by the data matrix
X. Using the maximum Hotelling T2 value as a threshold
all newly observed power system instances are classified
as either suspect or non suspect. The smaller the value the
closer the power system instance aligns with the dynamics
of the trusted model. Then upon classification a control
engineer can perform further analysis to determine the root
cause of the cyber-event.

C. Grubbs’ Test

The Grubbs’ test, also known as the maximum normed
residual test, is used to detect outliers in a univariate data
set [12] [13]. Formally the test can be defined as a means
of hypothesis testing. Using the test statistic G as defined
by Equation 8 the result of the hypothesis test can either
be H0 for no outliers in the data set and Ha if there is
exactly one outlier in the data set.

G =
max|Yi − Ȳ |

s
(8)

With Yi representing the measured value, Ȳ representing
the sample mean, and s representing the standard deviation
of the state variable it is possible to also define the critical
region for each variable. The test hypothesis Ha is true if
for a given data set Y = [y1, y2, . . . , yN−1, yN ] Equation
9 holds true; with tα/(2N),N−2 denoting the critical value
of the t distribution with (N-2) degrees of freedom and a
significance level of α/2N .

G >
(N − 1)√

N

√
(tα/(2N),N−2)2

N − 2 + (tα/(2N),N−2)2
(9)

For clarity the Grubbs’ test is syntactically adjusted to fit
the application of detecting the compromised power system
state variable. For an incoming power system instance Xi,
the dimensional transformation scheme, PCA, transforms
it into a new vector space and a distance classifier is
used to determine the validity of the instance. However,
this does not identify the variable that was the source
of the cyber-event. Therefore, after each power system
instance cyber-event classification the Grubbs’ test can be
performed on each variable independently to determine any
potential anomalies in that state variable based on historical
readings. Each newly observed instance i is comprised of
n variables with each variable labeled as xi,j . By letting
Yj = [x1,j , x2,j , . . . , xN−1,j , xN,j ] a new notation can
be defined for the identification scheme. For instance the
vector Y1 describes the full set of bus 1 voltages.

Since the newest power system instance, if classified
as containing a cyber-event, is the one under inspection
with the Grubbs’ test it is the N th observation that will
be calculated and compared. The Grubbs’ test can now
formally be defined as Equation 10 and 11. In Equation
11 a discriminate δα,N is created that equals the right hand
side of Equation 9.
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Fig. 3. Bus Voltages Distribution

G =
|YN,j − Ȳj |
s(Yj)

(10)

G > δα,N (11)

V. EVENT CLASSIFICATION

If a cyber event has occurred it is desired to detect such
an event and be able to alert on intrusion or failure. This
classification capability includes the identification of the
compromised node. The immediate feedback will allow
the trigger of an alarm allowing a security analyst or
control engineer to further investigate the event. To better
understand the power system state parameters trying to be
secured Figure 3 and Figure 4 show the normal probability
plots for the bus voltages and bus loads respectfully for a
total of 996 converging power system instances.

Given that we now have defined a transformation matrix
W such that this transformation has eliminated all redun-
dancy when mapped to the dimensional space we can now
interpret new instances of the power system. With a trusted
model derived from known instances a threshold value,
T 2
thr was utilized to classify newly observed power system

instances and is based on the maximum Hotelling T2 of the
trusted model in the transformed dimensional space. Using
a trusted model containing 996 simulated power system
instances, the maximum threshold value was determined
to be T 2

thr = 332. When each of the 10 simulated cyber-
events were mapped to the new dimensional space as a
single score, that event’s Hotelling T2 value was calculated.
The T2 value calculated for each power system instance
containing a cyber-event is shown in Table III. This table
reveals that the each power system instance that contained
a cyber-event was successfully classified as such. However,
the challenge then comes to classify the node or source of
the cyber-event.

Using Grubbs’ test, Equations 10 and 11, a classification
was conducted within each power system state variable
based on the outlier hypothesis testing. Recall that the 10
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Fig. 4. Bus Loads Distribution

TABLE III
IDENTIFICATION RESULTS N=997

j Description T 2 G δα=0.05,N δα=0.5,N

1 Bus Volt 852.31 6.266 Y Y
2 Bus Volt 960.50 8.005 Y Y
3 Bus Volt 909.86 7.148 Y Y
4 Bus Volt 954.85 7.364 Y Y
5 Bus Volt 976.88 7.850 Y Y
6 Load 1 994.10 4.089 Y Y
7 Load 2 995.92 3.056 N N
8 Load 3 995.62 3.769 N Y
9 Load 4 995.81 3.869 N Y

10 Load 5 995.99 3.545 N Y

simulated cyber-events correspond to malforming trusted
instances by changing only one of the variables to zero
at a time. For a N value of 997 the discernment value
δ for α = 0.5 is 3.4705, δ0.5,997 = 3.4705. Similarly
the identification scheme was determined using a α = 0.5
for N = 997, resulting in a discernment value δ of 4.039,
δ0.05,997 = 4.039. Using the calculated discriminant values
combined with Equation 11 for classification, each variable
can be identified as being the source of the cyber-event.
The results of the identification for each discriminant value
across all 10 power system state variables is shown in Table
III. A ’Y’ denotes that the associated discriminant function
δα,N successfully identified the source of the cyber-event,
and a ’N’ denotes a non-successful identification.

Results indicate that for both α values, α = 0.5 and α =
0.05, every simulated cyber-event on the bus voltages were
identified. This perhaps could have been anticipated by
thoroughly analyzing Figure 3 where it is observed that
a majority of the previously observed power system bus
voltages occur within the region 0.6 < Vi < 1.5. This
however is not the case for the bus loads. The real power
of the bus loads seem to concentrate between the region
0 < Li < 1.2, with a steep descent towards 0. Therefore,
a cyber-event of zero on a bus load will be harder to
detect than a cyber-event of zero on the bus voltages.
By changing the significance value α, a larger region is
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covered inevitably increasing the classification potential of
the discriminant classifier. However, this may lead to higher
false positive identification. Using a higher alpha value,
specifically α = 0.5, all but one of the simulated cyber-
events were identified.

VI. FUTURE WORK

Though the simulated cyber-events offer insight into a
possible detection and identification scheme based on the
Grubbs’ test a more complete analysis of this approach
would include a full mapping of detectable regions for
cyber-events of varying values. One benefit of the extensive
analysis would include the fact that regions of stealthiness
can be mapped out for each variable. Furthermore, future
work includes a weighted alpha value that changes depend-
ing on the variance found within each power system state
variable. Such a technique may decrease the false positive
rate of the detection and identification scheme.

VII. CONCLUSION

Using a normalized residual test, power system state
variables were successfully identified as being the source
of a cyber-event. The residual testing scheme utilized is a
slight modification of the Grubbs’ test to classify the newly
observed power system state variables. Cyber-events are
simulated by changing each power system bus voltage and
the real power consumed at each bus independently to zero.
A change of zero may be the result of a faulty equipment
or an individual spoofing power system variables in an
effort to lower his utility bill. The new observation was
successfully classified as containing a cyber-event using a
dimensional transformation to transform observed power
system instances a probabilistic metric. Once the instance
is found to contain a cyber-event the Grubbs’ test was
conducted to determine the power system state variable that
was the source of the event. Such an analysis will allow
the security investigator or control engineer to immediately
isolate and fix the intrusion or problem.

The identification scheme described in this article is
performed on a 5 bus power system. Trusted instances
of the power system were determined using the Newton-
Rhapson method of mismatch error less than 0.01 and
convergence was required within 15 iterations. Principal
component analysis (PCA) was used as a feature reduction
method transforming 47 power system state variables into 8
principal components. Classification of each power system
instance was based on a threshold Hotelling’s T2 value
and if determined to contain a cyber-event the modified
Grubbs’ test was performed. This approach successfully
classified 100% of the simulated cyber-event instances as
containing a cyber-event and was able to identify 90% of
the compromised power system state variables.
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