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Abstract—One of the biggest efforts of securing cyberspace
is the ability to secure the critical infrastructure power grid.
This meshed network of geographically distributed control
systems has recently been interlaced with network capable
devices. This article manipulates power system state param-
eters to identify stealthy cyber-events based on the feature
identification method principal component analysis. Principle
component analysis is used to examine power system instances
contained in an in-control set. To develop a set of observable
power system instances the Newton-Rhapson method is used
to solve the power flow equations. Cyber-events were created
by changing the in-control instances of the power system
parameters over a range of ±40%. If a changed instance,
simulated malicious instance, was mapped via principle com-
ponent analysis within close range of the average Hotelling’s
T2 value that instance was deemed stealthy. Results indicate
certain features have a higher likelihood of remaining in the
stealthy regions.

I. INTRODUCTION

The critical infrastructure power grid has recently seen
an increase in the implementation of networked solid state
devices. The key goal of such influxes is to increase the
number of reporting nodes in the Wide Area Measurement
System (WAMS) for the purpose of billing, state estimation,
grid health, and for the efficient delivery of electricity to its
consumers. However, security becomes a concern when the
control decisions being implemented in the power system
is based on the values being reported by the nodes in the
WAMS.

The approach presented in this article uses a technique
known as principle component analysis (PCA) to classify
stealthy cyber-events based on the probability of occur-
rence. PCA is applied to the data resulting from an iterative
solution to the power flow equations. The iterative solution
used for the development of system data is the Newton-
Rhapson method and is known to be the most common
approach for solving the power flow equations [1]. Once
system data was obtained, PCA was used to transform the
data into a new vector space in order to better understand
the dynamics of the power system. A cyber event model
was then created to simulate either a malicious attack on
the system or a failing sensor. The classification scheme
developed in this article shows a statistical deviation in
the values observed during a cyber event and the values
observed under normal operating conditions.

The complexities and of the power grid is described in
Section II along with the details of the power system used
for this examination. Section III provides an overview of
the PCA method along with details regarding sanitization
of the data and classification. This section also contains
the results of the transformation in the new dimensional
space. The cyber-event model is developed in Section IV
and describes how the instances are created such that they
represent a possible malicious attack on the power system
or a failed sensor. Lastly, the results of the cyber-event
classification scheme is presented in Section V, followed
by conclusions.

II. THE POWER GRID

The primary steady state algorithms that are used to en-
sure the stability and reliability of the critical infrastructure
power grid are: 1) power flow, 2) optimal power flow, and 3)
state estimation [3]. The power flow dynamics throughout
a system is determined by using a computational method
to solve the power equations, Equations 1 and 2, which
are obtained by applying Kirchoff’s law at each Bus of the
system in question.
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where, P injec
i and Qinjec

i are the injected powers into each
Bus, Vi is the voltage on Bus i and Yij is element ij
of the admittance matrix. Optimal power flow takes into
account the economics of the system in that a cost function
is used to determine how much and when to generate
power. State estimation is a more realistic approach to
understanding the system as conditions in the field may
not match a purely analytical solution of the power system.
With state estimation, system parameters are measured
using intelligent electronic devices (IEDs) and are reported
back to a centralized location.

A. State Estimation

The supervisory control and data acquisition (SCADA)
system gathers all the sensor data from field intelligent



electronic devices (IEDs) and then according to the system
architecture derives a state estimation in order to obtain a
complete understanding of the system at that state. The
data collected is stored in database format on a server
known as the Historian. The state is a function of n
system state variables including Bus voltages, phase angles,
circuit breaker status, and tap changing transformer position
amongst others. The approach for cyber-event classification
presented in this article is designed to be implemented on
top of the existing SCADA infrastructure. This proposed
classification scheme uses the data stored in the Historian to
develop a near complete understanding of the power system
dynamics where statistical inferences then can be made.

B. Power Flow

The goal of the Newton-Rhapson method when applied
to power system analysis is to provide an iterative method
for solving the nonlinear algebraic power flow equations,
Equations 1 and 2 [4]. This method is known to be the most
common method used [1]. The goal of the iterative method
is to decrease the vector of errors produced by taking the
difference of powers to a certain point that is declared
acceptable. For instance the error stopping point used in this
approach is εs = 0.01. This means that the absolute values
of both the active and reactive power mismatches all had
to be below 0.01 to be considered a converging instance.
Also, for this examination convergence had to occur within
15 iterations or the instance was declared a non-converging
instance. On average the five Bus system converged within
4 iterations. The extreme of 15 iterations was selected as
a stopping point given that if the system did not converge
within 15 iterations it is likely that for that given set of
inputs the system can not exists. A flat start means that for
simulation purposes all non-voltage controlled Busses are
assumed to have a voltage of 1 per unit while all angles are
assumed to be zero. For a more detailed description of the
iterative solutions to the power flow problem the reader is
encouraged to view the following referenced text [1], [4],
[5].

C. System Model

To demonstrate the classification of stealthy cyber-events
a relatively simple power system was selected. Multiple
instances of this model were conducted using the Newton-
Rhapson method to solve the nonlinear algebraic power
flow equations. Using the 5 Bus power system [5] shown in
Figure 1 a series of power flow simulations were conducted.
The system shown is a 100 MVA 138 kV system with
the swing Bus positioned at Bus #1 or the Slack Bus.
Generators are connected at Bus #1 and Bus #2. Loads
are connected to every Bus in this model and are identified
by that Bus’s number. Table I shows the impedances used
for the six transmission lines considered in this system
model. A snapshot of the Bus input data is shown in Table
II. This information serves as the input parameters to the
power flow equations and with the successful convergence

Fig. 1. Five Bus One Line Diagram [5]

of the Newton-Rhapson method the other variables can be
determined. Bus #3 is a voltage controlled Bus and is part
of the input variable set. The slack Bus is simulated in such
a way that given the inputs shown in Figure 1 it picks up
the remaining slack to supply the required load.

TABLE I
5 BUS TRANSMISSION LINE PARAMETERS [5]

Bus - Bus Line Length (mi) R X B
1 - 2 40 0.042 0.168 0.041
2 - 5 30 0.031 0.126 0.031
2 - 3 30 0.031 0.126 0.031
3 - 4 80 0.084 0.336 0.082
3 - 5 50 0.053 0.210 0.051
4 - 5 60 0.063 0.252 0.061

TABLE II
5 BUS INPUT SNAPSHOT

Bus # Type V Delta PG QG PL QL
1 0 - 0 - - 0.65 0.3
2 1 - - 0 0 1.150 0.6
3 2 1.020 0 1.8 - 0.7 0.4
4 1 - - 0 0 0.7 0.3
5 1 - - 0 0 0.850 0.4

III. PRINCIPAL COMPONENT ANALYSIS

In any determinable system there is a finite number of
driving forces which governs how the system behaves. By
observing grouping phenomenon in the data it is possible
to replace a group of variables with a single new variable,
greatly reducing the redundancy in the data. Principle
component analysis (PCA) is a quantitative process for
achieving a system simplification. A decrease in redun-
dancy and an overall simplification of the data is made
possible through a transformation into a new vector space
where all the basis vectors are independent of each other.
The basis vectors in the new dimensional space are called
principal components [6].

Perhaps one of the most commonly used statistical
analysis tools for feature extraction, PCA is based on the
statistics of a training set to linearly transform the set in
such a way that the new primary basis are independent of
each other. The linear transformation used is based on a
covariance matrix which is defined by the patterns found
in the training set. PCA finds a linear transformation such
that

Y = WX (3)



where X and Y are mxn matrices related by a transforma-
tion W. Based on Equation 3 the following variables can
be defined: wi are the rows of W, xi are the columns of
X, and yi are the columns of Y.

The row vectors of W {w1, ..., wm} are called the
principal components of x. Before PCA can be applied to a
data set it is customary to first preform sanitization on the
data. This sanitization guarantees any unintended biassing
of the new components. After centering the normalized
covariance SX was determined using the unbiased estimator
for normalization.

SX =
1

n− 1
XXT (4)

This produced a covariance matrix with dimensions mxm
with the diagonal terms representing the variances and off-
diagonal terms representing the covariaces of data matrix
X. The closer the off-diagonal terms are to zero the closer
the variables represented by the indices of SX are to being
completely uncorrelated. Conversely, the higher these off-
diagonal terms are the more correlated the two variables
are. Also the higher the off diagonal terms are the higher
the redundancy is in the data matrix X.

The linear transformation produced by PCA selects a
transformation W such that the principle components or
basis vectors wi produced are completely orthonomal. Or-
thonomality is ensured due to the fact that the dot product of
each basis vector with another produces the Kronker delta
function, wi·wj = δij . In addition to being orthonormal, the
basis vectors are ordered based on the amount of variance
that is being accounted for by that basis vector or principal
component. This corresponds to the fact that PCA will
produce a transformation matrix W such that the variance
of data matrix X is mostly accounted for by principal
component w1. As hinted at in the previous section the
lower the diagonal terms of the covariance matrix are the
lower the redundancy is in the data. Therefore the solution
to PCA seeks a covariance matrix SY such that the off-
diagonal terms are zero where,

SY =
1

n− 1
YYT (5)

Plugging Equation 3 into Equation 5 we have

SY =
1

n− 1
W(XXT )WT (6)

With this solution to PCA it can be shown that the principal
components of data matrix X are the eigenvectors of XXT

or are the rows of W. Also, the ith diagonal term of SY

is the variance of X projected onto pi.

A. Classification of Stealthy Attacks

To use PCA for classification we seek a method where
for a suspicious data matrix X�, the data can be projected
and the successful identification of malicious instance

−→
X�

m

is made possible. If malicious instance
−→
X�

m does not follow
the statistical trends identified by PCA using the training

set X it can be classified as a potential malicious instance.
Once classified the instance then can be further investigated
to identify the cause of the compromised reading x�

i. This
would allow the investigator or control engineer to isolate
the intrusion.

The Hotelling’s T2 value, Equation 7, is an extension of
the t-test used to determine the difference between means
of two independent variables. This extension allows for
a statistical measure of the multivariate distance of each
instance from the center of a data set. An instance is labeled
stealthy if it is both a malicious instance and occurs close
to the multivariate center.

T 2 = n(X− µ)�S−1(X− µ) (7)

The classification approach presented in this article is a
probabilistic approach in describing how likely an instance
is to occur. Instances that fit to the dynamics of the data
matrix X or control set have a high likelihood of occurring
while instances that lie on the boundaries are less likely to
occur.

It can also be shown that the Hotelling’s T2 value follows
the F distribution as defined by Equation 8 [7].

T 2 ∼ (n− 1)p

(n− p)
Fp,n−p(x) (8)

where p is the number of principal components retained
and n is the number of instances in the sample space.
The F cumulative probability distribution function returns
the cumulative probability of obtaining a value x for
given parameters p and n. Rearranging Equation 8 we can
calculate that the probability of observing at least T2 is

P (≥ T 2) = 1− Fp,n−p(z) (9)

This allows for a probabilistic metric to determine whether
or not an instance is in-control. If the instance is in-
control then it follows the dynamics as defined by the data
matrix X. A low probability, as defined by Equation 9,
for observing at least that T2 corresponds to a high T2

value. This means that the instance is far away from the
multivariate center and therefore is least likely to occur.
Conversely, a high probability corresponds to a low T2

value and is therefore closer to the center of the data.
Any in-control instance can be considered an instance

whose variables follow the dynamics of the system. These
instances can be considered instances that would occur
under normal operation. Because these instances are likely
to occur under normal operation any malicious instance
contain in this set is classified a stealthy event. An out-of-
control instance would be an instance whose dynamics do
not fit uniformly in with the dynamics of the in-control in-
stances. Out-of-control instances are not considered normal
operation and therefore any operation that exists outside
of normal operation can be classified as an out-of-control
instance. If a malicious instances is located in this out-of-
control set then it is not classified a stealthy event. The
stealthy set S can be classified into the following three



regions: slightly, reasonably, and extremely stealthy based
on how far that instance occurs from center. Table III
shows the classification metric used in this article to classify
the stealthiness of cyber-events. This metric is based on
the standard deviation σ of the average Hotelling’s T2

value, T̄ 2, and is therefore also based on the probability
of occurrence as defined by the F distribution, Equation 9.

TABLE III
CLASSIFICATION METRIC FOR STEALTHYNESS

Notation Description Region

Ss Slightly 1
2σ ≤ T̄ 2 < 3

4σ

Sr Reasonably 1
4σ ≤ T̄ 2 < 1

2σ

Se Extremely T̄ 2 < 1
4σ

B. PCA Transformaiton

Once mapped to the new dimensional space it was
determined that the first principal component or basis vector
accounted for over 15% and the second accounted for
over 10% of the variance found in the data set. As noted
in the previous section, the Hotelling T2 value is the
multivariate distance from the center of data. This value
is calculated using Equation 7 for each of the 13,741
converging instances of the data matrix X. By calculating
the T2 value for every instance it was determined that the
power system data when plotted in the new dimensional
space has a max distance of T̄ 2

max = 4717 and a mean
distance of T̄ 2 = 18.99 from the data center with a standard
deiviation σ = 88.06.

IV. CYBER-EVENT MODEL

The cyber-event model used for classification is two-
fold in that it represents two possibilities that can occur
in power system WAMS. Event #1 can be considered to be
a non-malicious incident in which the controller or sensor
in the field making the measurement breaks or becomes
damaged as a result of natural causes. Some examples of
this may include natural disasters, faulty equipment, or wear
on the device over the years. Such readings may fluctuate
within a certain percent of its actual measured value.
Event #2 can be classified as an actual malicious event
in which an attacker purposely launches a data injection
attack against the control system. Examples of this include
the falsification or spoofing of data values reported by a
smart sensor as revealed by Brinkhaus et al [8]. This work
currently makes no distinction of the two events only that
it is able to classify the event that did occur.

To simulate these types of cyber-events being reported
by the WAMS 100 instances were selected from the data
matrix

−→
Xi such that each subsequent event has the high-

est probability of occurring, i.e P (≥ T 2(
−→
X1)) ≥ P (≥

T 2(
−→
X2)) · · · ≥ P (≥ T 2(

−→
X100)). These vectors provide

a starting point to simulate several thousand cyber-events.
The 19 features of each of the 100 instances were then
changed individually between ±40% at 1% intervals of its

original value. After each change, PCA was performed and
the new instances was plotted against all instances of the
original in-control set. This iterative process of changing
each element of each instance produced a suspicious set X�

whose size after sanitization was 13741x19. Sanitization of
the suspicious set included the deletion of all instances

−→
Xi

�

whose T 2(
−→
Xi

�) > 8
7σ � 100 as this falls well outside the

region of slightly stealthy.

V. EVENT CLASSIFICATION

If a cyber event has occurred, it is desired to detect and
classify such an event and be able to alert on intrusion or
failure. This immediate feedback will allow the trigger of
an alarm allowing a security analyst or control engineer
to further investigate the event. Given that we now have
defined a transformation matrix W such that this trans-
formation has eliminated all redundancy when mapped to
the dimensional space we can now interpret new instances
of the power system. With the suspicious set X� and the
classification regions described in Table III event mapping
can now begin. This process of mapping small malicious
changes based on the T 2 and comparing it to an average
under steady state conditions will produce a mapping of
malicious instances that can occur in the bounded regions
of an average. An example of this would be if the power
system instances naturally observed average around a given
T 2 point in the multivariate system then by creating an
event, be it an attack or not, such that its T 2 occurs in
close proximity then that malicious instances can be labeled
suspicious. The results show that by changing the values of
different features of the same class by the same amount, i.e
changing the voltage 1 and voltage 2 by 10%, will have a
different T 2 and therefore a different level of stealthiness.

For each of the 13,741 instances the 19 features were
changed across a boundary of ±40%. After each simulated
event, that event’s T 2 was compared to the the average
using a metric based on the standard deviation σ. This
allows for a classification of stealthiness based on how close
it occurs to the average T 2 value. After each simulated
instance a count was kept expressing how many simulated
instances occurred within each of the regions based on a
change in percent of its original value. The results for the
voltages and powers consumed by the loads are shown in
Figure 2. Recall that Ss, Sr, andSe refer to the following
regions of steeliness: slightly, reasonably, and extremely.
The top two graphs show a count of instances occurring in
the slightly region, the middle two show a count in the
reasonably region and the bottom two graphs show the
extremely stealthy region. Though this information only
reveals a count of instance occurrence for each feature and
percent change it offers valuable comparative information.

From Figure 2 it can be determined that there is a higher
count of V5 changes in the Ss region, slightly stealthy
region, than there is V4 changes. In other words the same
percent change in voltage at Bus 5 is more likely to occur
in the slightly region than it would for the voltage at
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Fig. 2. Malicious Event Classification Count of Voltage and Load Events in Each Region.

Bus 4. In fact the count reveals a count of double that
of the voltage at Bus 4. Also, this information reveals
that small changes in the load values have drastic effects
on the stealthiness of the overall instance occurring. Of
all the malicious state parameters simulated, the voltage
parameters remained amongst the highest count found to
be contained within the declared regions of stealthiness.
Loads, however, were observed to have the lowest count as
shown in Figure 2. This information reveals that it is harder
to spoof load values and remain in close proximity of the
average than it is to make voltage changes and remain in
the regions of stealthiness.

VI. CONCLUSION

The dimensional reduction provided by PCA offers a way
to observe system dynamics that otherwise would remain
hidden. The transformation decreases the redundancy of the
data allowing for a better understanding of the data set. The
process of PCA was applied to a 5 Bus power system and
a cyber-event identification scheme was developed based
on the Hotelling’s T2 values of suspect and non-suspect
instances of the power system. Instances of the power
system were determined using the Newton-Rhapson method
of mismatch error less than 0.01 and convergence was
required within 15 iterations. The instances defined by this
iterative method was then transformed to the new space
using PCA where certain inferences can take place.

By extracting in-control instances of the 5 Bus power
system and changing features one at a time over a range of
±40% and mapping that instances to the new dimensional

space it was determined that some changes fall close to
the norm while others occur at far distances. Based on
this information three regions of stealthiness were labeled
such that the standard deviation σ of the Hotelling’s T2

value was used has a identification metric for stealthiness.
If a change, simulated malicious instance, was mapped
within close range of the average Hotelling’s T2 value that
instance was deemed stealthy. Results indicate that in order
to remain stealthy, within 1

2σ of T̄ 2, it is better to change
the Bus voltages than it is to change the Bus load values.
Similarly it was determined that by changing voltage at Bus
1 it is more likely to remain in the stealthy region then by
changing the voltage at Bus 4.
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