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Abstract—Research efforts to develop malicious application
detection algorithms have been a priority ever since the discovery
of the first “viruses”. Various methods are used to search and
identify these malicious applications. One such method, n-gram
analysis, can be implemented to extract features from binary files.
These features are then be used by machine learning algorithms
to classify them as malicious or benign. However, the resulting
high dimensionality of the features makes accurate detection in
some cases impossible. This is known as “the curse of dimension-
ality”. To counteract this effect, a feature reduction technique
known as randomized projection was implemented. Through this
reduction, not only are classification times decreased but also an
increase in true positive and decreases false positive rates are
observed. By varying the n-gram size and target feature size it is
possible to fine-tune the accuracy of machine learning algorithms
to reach an average accuracy of 99%.

Index Terms—Computer security, Data mining, Feature ex-
traction

I. INTRODUCTION

Since the discovery of the “Elk Cloner” computer virus
in 1981 [1], the rate of development and infection of ma-
licious software applications has increased exponentially. As
the internet grew, it became easy for many types of malicious
software or “malware” to gain fast and reliable access to
victims’ machines. Malware is a catch-all phrase used to refer
to any program that is designed to “harm or subvert a system’s
intended functionality” [2] and falls under several categories,
mainly viruses, worms, and Trojans. In practice, consumers
and companies commonly refer to any malicious application,
despite their idiosyncrasies, as a virus. In defense, software
tools such as anti-viruses and intrusion detection systems have
been developed by the cyber security community to detect and
disable attacks from such malicious applications [3].

Traditionally, these defense tools used signature-based de-
tection. This involves comparing the byte sequence of a sus-
pected malicious application to the signatures of known threats
stored in a virus signature database. If part of the application
matches a signature in the database then the application in
question is flagged as malicious. Signature-based detection is
“effective when the virus code does not change significantly
over time” [4]. In fact, a single virus signature can be used
to match multiple variants of a particular virus if they all
contain the base signature code [4]. Signature-based detection
is a very practical method of malware detection and became

popular due to its ease of use and low false-positive rates [5].
However, this approach is fundamentally limited to detecting
only known threats. That is, signature-based detection tools are
incapable of detecting new and previously unknown threats
which do not contain any known signatures. This limitation
leaves signature-based anti-virus tools completely ineffective
against “zero-day” viruses until their signature database, aka
virus definitions, have been updated with the signatures of
the new threats. As a result, signature-based detection tools
require frequent updates of the signature database to keep
up with new malware [3]. This process can be very time
consuming as suspicious applications must first be identified
before they can be analyzed. This usually involves waiting
until such applications have been reported for attacking several
systems or networks. Once the suspect malicious application
has been procured, its malicious intent must be confirmed, and
then a signature i.e. a unique sequence of bytes uncommon to
most other programs must be identified by an analyst. This
signature is then added to the signature database to be used
by the virus detection engine for matching. In addition, these
databases have the potential to grow very large and cumbrous,
which can hinder the detection process.

An alarming observation is that viruses are becoming easier
to produce. Due to the introduction of attack kits, any cyber
criminal can get these ready-made virus fabrication tools
off the black market and start creating and deploying new
malware into the wild [6]. According to the Symantec 2012
Internet Threat Report, such attack kits contributed over 61%
(3 billion) of malware detected by Symantec in 2011 [6]. This
surge of new malicious authors and malware has increased
the need for research into the field of malware detection
to ensure that the cyber security community has the upper
hand. Christodorescu aptly describes it as a “game between
malicious code writers and researchers working on malicious
code detection.” [4]

There have been research efforts which use other methods
of detection to mitigate some of the difficulties inherent
in dealing with new and unknown threats. Some of these
approaches are based in the realms of information retrieval and
data mining such as [7]–[10] and have yielded some promising
results with respect to identifying whether a program is mali-
cious. However, many of these research efforts are faced with
the “curse of dimensionality”, which refers to the challenges of



computing in a high-dimensional space [11]. Dimensionality
reduction techniques such as principal component analysis,
latent semantic indexing and random projection allow the
effects of the “curse of dimensionality” to be mitigated by
moving from a high dimensional space to a lower-dimensional
space. The work done in this paper contributes to the solution
of malware detection by focusing on the application and effect
of dimensionality reduction in the malicious software detection
process. Previous experiments have shown that the use of
random projection as a feature extraction and dimensionality
reduction technique in the context of malware detection has
encouraging results [3], [12]–[15]. It uses application feature
sets reduced using the random projection technique in addition
to features reduced using mutual information. The efficiency
of using different parameters for random projection reduced
data sets as well as n-gram size variation to use with different
classification algorithms was tested and recorded in the results
section.

II. BACKGROUND

The problem of malicious application detection is very
popular and well-studied, and has gathered a significant body
of research. Essentially, all the different research ventures can
be categorized as either static analysis or dynamic analysis.
Static analysis refers to the process of determining whether
an application is malicious without actually running the pro-
gram in question. Dynamic analysis describes the process of
determining whether a program is malicious by monitoring
the behavior of a suspect program by executing it, usually
within a virtual environment. Neither one of these approaches
is a complete solution in itself, but each has a part to play in
producing better malware detection systems.

A. n-gram Analysis

When dealing with information retrieval or data mining, the
features extracted from the data set play a pivotal role in the
success of the prediction process. The information retrieval
technique of n-gram analysis has proven to be a valuable tool
for feature extraction in several research efforts which focus
on the detection and/or classification of malicious applications
[7]–[9], [12]–[22]. An n-gram is any substring of length n
[23]. Since n-grams overlap, they do not just capture statistics
about sub-strings of length n, but also implicitly capture
frequencies of longer sub-strings [17]. However, due to the
high dimensionality of n-gram feature sets, the gathered data is
a subject to the “curse of dimensionality.” [11] Many of these
research efforts use some form of dimensionality reduction to
curb these large feature sets in order to mitigate the effects.

B. Mutual Information

Due to the enormity of the set of n-grams extracted from
a program, Kolter introduced the dimensionality reduction
technique of mutual information as a processing step to reduce
the dimensionality of the program feature vectors. The most
relevant of these n-grams were selected using the average

mutual information measure from Yang et al. [24] i.e. the
Information Gain calculated as:

IG(j) =
∑

vj∈{1,0}

∑
Ci

P (vj , Ci)log
P (vj , Ci)

P (vj)P (Ci)

where Ci is the ith class, vj is the value of the jth attribute,
P (vj , Ci) is the proportion that the jth attribute has the value
vj in the class Ci, P (vj) is the proportion that the jth n-
gram takes the value vj in the training data, and P (Ci) is the
proportion of the training data belonging to the class Ci [8].
The n-grams with the highest information gain were selected
as the most relevant. These selected n-grams were then used
to create Boolean vectors similar to those created by Shultz
[25], with each vector element indicating either the presence
or absence of a particular n-gram in/from the program being
represented.

The Malware Collection Booster (McBoost) developed by
Perdisci et al. [26] followed an approach similar to Kolter [8],
but also introduced the ability to detect whether an executable
was packed/compressed, and if so, could then unpack the
executable before handing it over for classification. McBoost
consisted of three modules: A) a classifier which determines
if an executable is packed; B) a universal unpacker based
on dynamic analysis; C) and a classifier which detected
if an executable was malicious or benign using a bagged-
decision-tree (BDT). Module C consisted of two specialized
classifiers trained to distinguish between malicious vs. benign
non-packed or hidden code; hidden code was the result of
unpacking a packed executable.

Based on results from a comparison between an implemen-
tation of Kolter’s method [8] and McBoost, Perdisci et al.
concluded that Kolter’s method was “biased towards detecting
packed executables as malware and non-packed executables as
benign, regardless of the nature of the hidden or non-packed
code.” [22]

C. Random Projection

Though the feature selection technique of mutual infor-
mation has been very popular in reducing the feature sets
of related research efforts, another dimensionality reduction
technique which has been recently applied to the field of
malware detection is random projection. Unlike the mutual
information method used by Kolter [8], random projection is a
feature extraction technique which embeds a high dimensional
feature set into a “low-dimensional subspace using a random
matrix whose columns have unit length” [27], thus creating a
completely new set of features.

Random projection feature extraction technique was first
introduced to the realm of malicious application detection in
[12]–[15]. In [14], a vector space model was used with n-
gram analysis to produce weighted feature vectors from binary
executables, similarly to Kolter [8]. Every dimension of these
vectors represented a unique n-gram which could be extracted
from the corresponding executable. These feature vectors were
then used as input to random projection algorithms in order
to produce feature vectors of a reduced dimension. Three



methods for random projection were used to reduce the feature
vectors: 1) matrix multiplication with a random matrix of unit
vectors with elements generated from a Gaussian distribution
with a mean of 0 and standard deviation of 1; 2) Achlioptas’
matrix multiplication with a random matrix of values of 0,
+1, or -1 following a probability distribution of 2/3, 1/6 and
1/6 respectively [28]; 3) and random set projection based
on the Linial-London-Rabinovich algorithm [29], which is an
extension of the Johnson-Lindenstrauss [30] and Bourgain [31]
algorithms.

To test the efficacy of using random projection in this
particular context of malware detection in [3], [13], [14], n-
gram feature vectors with n-grams of length 3, 5, and 7 were
extracted from a data set of 1544 Windows formatted binary
executables: 709 benign files and 835 malicious files. Different
corpuses of reduced feature vectors were created using each of
the different random projection techniques mentioned above,
each containing feature sets of 500, 1000, and 1500 features.

A popular instance-based learning algorithm was used to
classify the documents in each of the corpuses. Each document
feature vector was compared to every other feature vector and
classified based on the classes of the most similar vectors
in the corpus. The cosine similarity measure was used to
determine the similarity between feature vectors over the range
of threshold values from 0 to 1.0 in increments of 0.05. Cosine
similarity “has the nice property that it is 1.0 for identical
vectors and 0.0 for orthogonal vectors.” [32] The following
formula was used for computing the cosine similarity between
a query Q and a document D, where wQ,i is the weight of the
ith n-gram in the query and wD,i is the weight of the ith

n-gram in the document:

CosineSimilarity(Q,D) =

∑
i wQ,iwD,i√∑

i w
2
Q,i

√∑
i w

2
D,i

The experimental results were very promising and produced
true positive rates for prediction as high as 0.95 and false
positive rates as low as 0.02 [14], comparable to results of
previous research efforts using the reduction technique of
mutual information.

III. EXPERIMENT

A. Data Set

The data set that was compiled for the experiments de-
scribed in this section consisted of 1622 Windows formatted
binary executable files. None of the files in the data set were
larger than 950 KB. Of these files, 303 were extracted from a
fresh installation of the Windows XP operating system, another
406 were extracted from a fresh installation of the Windows
Vista operating system, and another 78 were extracted from a
fresh installation of the Windows 7 operating system. All of
these sets were obtained by installing the respective operating
system in a virtual environment that was installed on a com-
modity PC. These virtual environments were not connected
to the Internet and therefore provided a safe location. This
ensured that it would allow for application extraction without

the worry of malicious infiltration during the gathering phase
of the research effort. This process provided a total of 787 files
that were in the data set and that were considered benign. The
remaining 835 files for the data set were malicious Trojan
horse applications that were downloaded from various web-
sites on the Internet including http://www.trojanfrance.com
and http://vx.netlux.org. These results were produced from ex-
periments in which 7 classifiers were trained and tested under
varying n-gram and feature set sizes, totaling 36 experiments
in all. [3]

B. Methodology

Following the methodologies of Kolter [8], a vector space
model was used to describe the executables in the data set.
n-gram analysis was used to create feature vectors from
the executables in the data set. A binary feature weighting
scheme was used for this effort, whereby each unique n-gram
was considered a feature, and feature vectors were created
for each document in the data set by assigning a ’1’ to a
vector dimension attribute if the corresponding n-gram was
present in the executable or ’0’ if it was not. These feature
vectors were labeled with their corresponding class of either
malicious or benign. In performance testing, the malicious
class was considered the positive class since the goal of
detection was to identify malicious instances, while the benign
class was considered the negative class. The binary feature
weighting scheme was used as opposed to other schemes
like the popular term-frequency inverse-document-frequency
(TF-IDF) vector space weighting scheme because the mutual
information feature selection technique is defined using a
binary feature weighting method. The TF-IDF weight of a
feature increases proportionally to the number of times that
feature appears in a document, but is inversely proportional to
the number of times that feature appears in the corpus, which
helps to control the weights of features that are generally more
common than others.

Six different n-gram sizes ranging from 2 to 7 were used in
the n-gram analysis phase to produce multiple feature vectors
representing the same executable file. Multiple n-gram sizes
were used in order to analyze the effect of n-gram size on
the classification of an executable feature vector. Each n-gram
size created a set of feature vectors with a different number
of features which grew exponentially with the n-gram size.
n-grams of length 2, 3, 4, 5, 6, and 7 created feature vectors
with dimensions of 65536, 16085252, 25368317, 47616980,
65500194, and 99057173 respectively. That is, n-gram analysis
with an n-gram size of 7 yielded upwards of 99 million unique
n-grams.

For each set, three reduced versions of each feature vector
were created by reducing each vector to a feature set size
of 500, 1000, and 1500 using the respective dimensionality
reduction technique. This was done in order to analyze the
effect of the number of features on the classification of an
executable feature vector. The mutual information set was
reduced by selecting the most relevant n-gram features based
on the information gain measure from Yang et al. [24] The



random projection set was first reduced to 200,000 features
via mutual information before being further reduced using
the method of random projection proposed by Achlioptas
[28]. The mutual information preprocessing phase was used
to remove the influence of less significant features and also
speed up the overall reduction process.

Several machine learning algorithms were applied to the
feature set, using the Waikato Environment for Knowledge
Analysis (WEKA) [33]. These classification algorithms were
the k-Nearest-Neighbors Instance-based learner (IBk), a Naı̈ve
Bayes classifier, a support vector machine (SVM), a decision
tree (J48), and “boosted” versions of the last three classifiers
[8]. These classifiers were trained and tested using stratified
10-fold cross-validation, with n-grams of length 4 and feature
vectors of the top 500 n-grams. That is, the data set was
separated into ten disjoint sets of the same size and one set
was used as the testing set while the other nine combined
were used to train the classifier. This process was conducted
ten times using each subset as the test set only once, and then
the results from the different runs were averaged.

Previous results show that SVM had the highest accuracy
gain from the use of random projection, the accuracy raised
from 96.49% to 98.15% due to increase in true positive rates
and decrease in false positive rates. [3] To further improve the
accuracy, n-gram size as well as generated feature size were
varied. As described below, the best combination of parameters
emerged for even better results.

IV. RESULTS

All of the experiments were conducted on a commodity
Acer PC with an AMD Phenom II triple-core processor and
4GB of DDR3 RAM, running the Ubuntu Linux operating
system.

A. n-gram Size Variation

While conducting the experiments described above, the n-
gram size parameter was varied in the range of 2 to 7 in order
to find the effect, if any, of n-gram size on the accuracy of
the various classifiers. For this set of experiments, feature size
was maintained at 1000 features.

For the mutual information and random projection trained
classifiers, there is a trend when observing the total average
accuracy (average of all the average accuracies) of the classi-
fiers versus n-gram size. In Figure 1 and Figure 2, the total
average accuracy peaks around the mid-range of n-gram sizes
and tapers off near the ends at n = 2 and n = 7. Figure 3 and
Figure 4 illustrate the average accuracies of each classifier
with respect to n-gram size.

The average accuracy graphs (Figure 1 and Figure 2) show
that mutual information algorithm reaches higher overall accu-
racy, however, that is due to the fact that Naı̈ve Bayes classifier
performed much worse when using random projection (Figure
4).

It is apparent that using features with an n-gram size of
2 or 7 generally yielded less accurate classifiers. This is
because features of n-gram size 2 do not provide enough

Fig. 1. Total average accuracy of all mutual information classifiers vs. n-gram
size at 1000 features

Fig. 2. Total average accuracy of all random projection classifiers vs. n-gram
size at 1000 features

Fig. 3. Average accuracy of each mutual information classifier vs. n-gram
size at 1000 features

Fig. 4. Average accuracy of each random projection classifier vs. n-gram size
at 1000 features

important information that is present in features of a larger n-
gram size. Features of n-gram size 7 provide some extraneous
information which impairs the classification process. Once
exception though is the naı̈ve Bayes classifier trained with
random projection data which, on average, gave its most
accurate predictions when dealing with an n-gram size of 2.

On average the classifiers were most accurate when working
with n-grams of size 3 or 4, particularly n-grams of size 3
for the mutual information trained classifiers and n-grams of
length 4 for random projection trained classifiers.



Fig. 5. Total average accuracy of all mutual information classifiers vs. feature
set size for 6-grams.

Fig. 6. Total average accuracy of all random projection classifiers vs. feature
set size for 6-grams.

B. Feature Set Size Variation

The feature set size parameter was assigned 3 different
values, 500, 1000, and 1500, in order to find the impact, if
any, of feature set size on the effectiveness of the various
classifiers. For this experiment, n-gram size was maintained
at 6-grams.

In general, both the mutual information and random pro-
jection trained classifiers seemed to make more accurate
class predictions as the feature set size increased. The total
average classifier accuracy steadily increased as feature set
size increased for both the random projection trained classifiers
and the mutual information trained classifiers, as depicted in
Figure 5 and Figure 6 below.

The total average accuracy of the mutual information trained
classifiers appears to grow somewhat linearly with the feature
set size parameter. This correlates with the fact that the feature
set size was increased linearly in the experiments, by 500
features each gradation. For example, when the feature set
size was increased from 1000 to 1500, the mutual information
trained SVM classifier experienced an increase in average
accuracy that was approximately 89% of the increase it ex-
perienced when the feature set size was increased from 500 to
1000. Only a limited number of feature set sizes are examined
in these experiments, however, if the feature set size was to
be increased linearly, it is expected that the growth rate of the
total average accuracy would begin to taper off at some point
as features with less predictive information are introduced.

On the other hand, the average accuracy of the random pro-
jection trained classifiers appears to have a more polynomial
growth rate, where the average accuracy experiences a greater
increase when raised from 500 features to 1000 features, than

Fig. 7. Average accuracy of each mutual information classifier vs. feature set
size for 6-grams.

Fig. 8. Average accuracy of each random projection classifier vs. feature set
size for 6-grams.

from 1000 features to 1500 features. For example, when the
feature set size was increased from 1000 to 1500, the random
projection trained SVM classifier experienced an increase in
average accuracy that was only about 48% of the increase
it experienced when the feature set size was increased from
500 to 1000. This may be attributed to the fact that all of
the features in the original data set are represented in the
reduced set of features created through random projection;
predictive information from each original feature is present in
the reduced feature set. That is, increasing the feature set size
of the reduced feature set does not introduce the influence of
previously absent features from the original feature set, as in
the case of mutual information feature reduction, but simply
allows for each original feature to have a greater influence
i.e. provide more detailed information in the reduced set of
features. It follows that since predictive information from all
the original features is present, providing a greater degree of
information about the same features will most likely help in
increasing the accuracy of the classification process. However,
it will not introduce new predictive information from other
features.

Total average accuracy for mutual information is higher, on
average, then the average accuracy of random projection. This
is due to the fact that Naı̈ve Bayes classifier performs much
worse using random projection, then the mutual information
algorithm.

V. CONCLUSIONS

Random Projection is a feature reduction tool that can be
used to improve speed and accuracy of data mining algorithms.
Combinations of n-gram analysis, random projection, and data
mining algorithms can be used to find malicious executables,
as a part of static analysis method.



An interesting trend is observed in the data - almost all the
tested classifiers’ accuracy tends to cluster while using mutual
information, however all of the classifiers perform differently
while using random projection.

Overall, the results of the experiments indicate that the best
accuracy is achieved using 4-gram feature retrieval method,
1400 feature set generated by random projection algorithm,
and Support Vector Machines (SVM) classifier. Boosted SVM
classifier performed almost identical, using the same condi-
tions.
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