
Examining Features for Android Malware Detection

M. Leeds, M. Keffeler, T. Atkison
Computer Science Department, University of Alabama, Tuscaloosa, AL, USA

Abstract— With the constantly increasing use of mobile de-
vices, the need for effective malware detection algorithms
is constantly growing. The research presented in this paper
expands upon previous work that applied machine learning
techniques to the area of Android malware detection by exam-
ining Java API call data as a method for malware detection.
In addition to examining a new feature, a significant amount
of work has been done in understanding how the model works
and various ways of improving its accuracy. Ultimately a
classification accuracy of around 80-85% was achieved using
the JAVA API call feature.

Keywords: Malware Detection, Android, Machine Learning.

1. Introduction
Mobile devices are, for many people, the primary mode of

communication and information access. Research believes that

there will be over 6 billion smartphone users by 2020. As

such, the security of these devices should be a top priority

both in business and personal use [1]. Regardless, they have

become the target of a plethora of attackers who want to obtain

access to these mobile devices. In 2014, over sixteen million

devices were held hostage by malware [2]. The effects of these

infections can result in terrible outcomes such as extortion,

identity theft, and even robbery. For this reason, mobile device

security is more important than it has ever been. The limited

computational resources and the multitude of different execu-

tion environments present a number of challenges in mobile

security. Furthermore, it has become typical for applications

to retain more data than is needed. This is causing an over

sharing dilemma as shown in [3]. As of this report, 82% of

all applications know if, and when, you use data networks and

Wi-Fi, when you turn your device on, as well as your last and

current location, all just from using the application [3]. In the

first six months of 2016, the malware known as GozNym took

$4 million in a few days from 24 banks, Canadian and U.S., by

singling out customer accounts [1]. Malware is a piece of our

day-to-day lives. Lately, advancements in Computer Science

as well as hardware improvements have made it feasible for

the use of machine learning to be applied effectively in the

extraction of helpful information from larger datasets. Thanks

to libraries such as TensorFlow, a flexible, high-level, open

source framework for machine learning, it has become quite

viable to gain insight from data that wouldn’t otherwise be

viable.

1.1 Android is the Target

Android devices are very popular. Their operating system runs

on over 1.4 billion devices [4], [5]. It is the target for the

sweeping majority of mobile malware. Beginning in 2010,

SophosLabs observed over 1.5 million samples of malware,

in Androids alone [1]. In fact, of 150 million apps that were

tested on the Play Store over the course of 3 months (in

over 190 countries), there were a minimum of 37 million

occurences of malware detected [6]. For the duration of Q4

in 2015, over 2.4 million new mobile malware threats were

detected [6]. Exacerbating the problem, these apps can be

“side-loaded” from unofficial stores and markets or even

directly installed from Android Application Package (APK)

files. This essentially makes it so that no matter how good

Google’s malware detection and vetting process is for their

store, malware can still be installed on a user’s device. On the

other side, for iOS users, their applications must come directly

from the official App Store; as such, it is quite difficult for

users to accidentally install malicious applications [1].

Android devices are so numerous that if a malware has

a relatively low infection rate, this will still equate to a

large amount of actual infected devices. In addition, the vast

majority of Android devices are not up to date. According to

[7], about 90% of these devices run older versions of their

operating system. For comparison, nearly 80% of iPhones are

not on the newest version of iOS [7]. Updates to these OS’s

are created, in many cases, to solve security problems that

have been discovered in the operating system. More often

than not, these can be utilized by attackers. By not keeping the

Operating System updated, the device is left open to attackers.

Quite recently, the effects of this were seen when a multitude

of vulnerabilities were exploited in Android. The collection of

vulnerabilities are referred to as “Stagefright” since that’s the

name of the core Android component that was exploited. These

exploits are particularly nasty due to the fact that they permit

an attacker to remotely execute code on a phone by sending

a specially crafted MMS message [6]. After the initial exploit

works, attackers will often try to retain control long-term via

Remote Access Tools (RAT), which are easily available for

purchase on the Internet. One particular tool has a well made

website with a multitude of pricing models, tutorials, and

simple payment systems [6].

2. Background
There have been several avenues of work in detecting malware

on mobile devices using machine learning algorithms and tech-

niques. These techniques range from Support Vector Machines

Int'l Conf. Security and Management | SAM'17 | 217

ISBN: 1-60132-467-7, CSREA Press ©

(SVM) [8] to Neural Networks [9] to Classification Trees

[10]. In [11], Zami et al. describes a framework that takes

android apps and extracts permissions from each followed

by classification of each as malware or goodware, somewhat

similar to our process. However, the author then proceeds by

clustering them through the K-Means clustering algorithm,

followed by classification of each through the J48 Decision

Tree algorithm. In a slightly different example, Fereidooni

et al. [12] proposed ANASTASIA, a Machine Learning-

based malware detection using static analysis of Android

applications. Their tool extracted as many informative features

as possible from Android applications and was tested on

several classification algorithms to determine which one would

perform the best.

A probabilistic discriminative learning model is used by Cen

et al. [13] with decompiled source code as well as permission

features. In [8], Sahs et al. described a malware detection

method using a One-Class Support Vector Machine. Li et al.

[14] used a SVM similar approach by looking at dangerous

permissions that are likely used by Android malware. A neuro-

fuzzy based clustering method is presented by Altaher et

al. in [10]. Altaher et al. uses a fuzzy clustering method to

determine the appropriate number of clusters again looking at

permissions used by the Android application. They were able

to refine their process in [15]. Some are able to simplify the

identification of similar malware by HTTP Traffic.

Mobile botnet families are clustered by Aresu et al. by

analyzing the generated HTTP traffic [16]. With the algorithm

they used, a small number of signatures can be extracted

from the clusters, allowing it to achieve a good tradeoff

between the detection rate and the false positive rate. In a

more simple example, Alam et al. [17] uses a system that

exposes code clones and detects both bytecode and native

code Android malware variants. In [18], Wang et al. propose a

behavior chain based method that can detect Android malware

including privacy leakage, SMS financial charges, malware

installation, and privilege escalation by using matrix theory.

In [19], Dong-Jie et al. use a static feature-based mechanism

to extract representative configuration and trace API calls for

identifying the Android malware. In [20], Santanu Kumar et al.

used Conformal Prediction as an evaluation framework during

runtime for their SVM-based classification approach. In [21],

Alam et al. were able to use a random forest of decision trees

in detecting malware in Android devices. According to [22],

Bengio et al. found that gradient descent may be inadequate

to train for tasks involving long-term dependencies, such as

consistently dangerous permissions.

In [23], Dimjaševic et al. use “maline” to orchestrate running

applications in virtual devices, sending random events to them,

and recording the system calls they make. We make use of the

same software in this paper with a different machine learning

algorithm.

3. Feature Analysis
The work presented here is an extension of previous efforts

[24]. In [24], feature selection was based on permissions and

system calls. These features were input into a machine learning

model. Specifically, it was a single layer neural network using

a Gradient Descent Optimizer and softmax regression, imple-

mented in TensorFlow. This method produced classification

accuracy results of between 80-85% using permissions, and a

considerably lower accuracy using system calls.

3.1 Examining Feature Weights

The tensorflow learn.py script was modified to print

the weights on each feature after the model finished training.

Then another script was written to match the weights to human

readable names and print them in descending order.

In the tables below, the learning rate was 0.01, the number

of training steps was 50, and the number of apps in the

dataset was 200. Higher weights indicate more certainty of

maliciousness/benignity based on that feature, but since the

weights for each feature go into a summing function before the

activation function that decides how to classify the samples,

they don’t have to neatly fit into an interval of the Real

numbers.

Table 1

PERMISSIONS INDICATIVE OF MALICIOUSNESS

Rank Permission Weight
1 READ PHONE STATE 1.179
2 WRITE APN SETTINGS 0.938
3 INSTALL PACKAGES 0.748
4 READ SMS 0.611
5 GET TASKS 0.579
6 RECEIVE BOOT COMPLETED 0.558
7 INTERNET 0.522
8 WRITE SMS 0.497
9 MOUNT UNMOUNT FILESYSTEMS 0.429
10 BIND ACCESSIBILITY SERVICE 0.417

According to Table 1, READ PHONE STATE is the #1

weighted permission by the network that indicates malicious-

ness. Upon further analysis, READ PHONE STATE ends up

being the second most used permission in malicious appli-

cations. 912 of the 1,000 malicious applications used this

permission, and the ratio of malicious to benign apps that used

it was much higher than for the top permission (which was IN-

TERNET). This helps to explain the heavy weight associated

with this permission. This permission gives applications the

ability to access information such as the phone number of the

device and current cellular network information [25]. It makes

sense that malicious apps want the phone number, possibly to

give to spammers. The SMS permissions (rows 4 and 8 of

Table 1) also make sense because a common way for black

hat hackers to make money is by messaging paid numbers.

The install packages permission, in row 3, can allow a device

to be further infected by installing more malware.

218 Int'l Conf. Security and Management | SAM'17 |

ISBN: 1-60132-467-7, CSREA Press ©

Table 2

PERMISSIONS INDICATIVE OF BENIGNITY

Rank Permission Weight
1 WAKE LOCK 0.869
2 USE CREDENTIALS 0.662
3 BLUETOOTH ADMIN 0.571
4 ACCESS NETWORK STATE 0.558
5 BLUETOOTH 0.538
6 CALL PHONE 0.479
7 PACKAGE USAGE STATS 0.470
8 DOWNLOAD WITHOUT NOTIFICATION 0.421
9 INTERACT ACROSS USERS FULL 0.347
10 WRITE MEDIA STORAGE 0.320

It may seem surprising that the permission listed in Table 2

row 2, which allows apps to authenticate with your Google

account, is the most indicative of benignity, but these requests

require user interaction [25]. As such, they are not very useful

to malicious app authors. The Bluetooth permissions, found in

rows 3 and 5, may also seem odd at first sight. However, most

malware infection happens over the Internet, not in person,

so there are not many uses for Bluetooth communication for

malicious app authors.

Table 3

SYSTEM CALLS INDICATIVE OF MALICIOUSNESS

Rank System Call Weight
1 mkdirat 0.322
2 nanosleep 0.272
3 getdents64 0.149
4 fstatat64 0.138
5 clock gettime 0.137
6 exit 0.130
7 pread64 0.124
8 getppid 0.112
9 fchmodat 0.108
10 futex 0.104

Of the maliciously classified system calls in Table 3, probably

the most logical one is fchmodat, found in row 9, because

apps may want to set the executable bit on a script they’re

injecting, or make a file writable that isn’t by default. [26]

A steep drop off in the weights listed in column 3 was

also noticed. This can be interpreted as there are only 2-3

system calls that are significant enough to be somewhat good

indicators of maliciousness. The findings in Table 3 also match

the results found in previous papers that showed a relatively

low classification accuracy when using system calls.

Table 4

SYSTEM CALLS INDICATIVE OF BENIGNITY

Rank System Call Weight
1 readlinkat 0.621
2 renameat 0.333
3 faccessat 0.277
4 pwrite64 0.247
5 fsync 0.214
6 sendmsg 0.196
7 getsockname 0.161
8 gettimeofday 0.135
9 epoll create1 0.130
10 pipe2 0.129

Fig. 1

NUMBER OF TRAINING STEPS VS CLASSIFICATION ACCURACY AND FALSE

NEGATIVE/POSITIVE RATES.

Given the relatively low classification accuracy of the system

call data from previous papers, it’s not worth spending much

energy diving in-depth on every system call weight listed in

Tables 3 and 4. However, it is noteworthy that readlinkat
is by far the most heavily weighted system call. This system

call only allows the app to read the contents of a symbolic

link [27]. It is unclear how, if at all, this system call could be

utilized in a malicious manner.

3.2 False Positive and Negative Rates

While classification accuracy is an important performance

metric, it is not the only one. The rates of false positives

and false negatives is also of interest. A low false negative

rate is probably more important than a low false positive rate

because it is better to be suspicious of some applications that

turn out to be benign than to let malicious ones slip through

the cracks and wreak havoc. To determine the false positive

and negative rates, the TensorFlow script was modified to

subtract the bit vector with the correct classifications from the

vector with the predictions rather than just comparing them

for equality. A -1 in the resulting vector represents a false

positive and a 1 represents a false negative (0 corresponds

to accurate classification). Percentages are then calculated for

each. In Figure 1, the blue data points show the classification

accuracy. The red data points are the false positive rate and

the green ones are the false negative rate. Those two metrics

are almost the same once the model has time to train properly.

4. Improvement on Previous Work
Previously, a classification accuracy of around 80% was

achieved using permissions data and an accuracy of around

60% was achieved using system call data. One way these

Int'l Conf. Security and Management | SAM'17 | 219

ISBN: 1-60132-467-7, CSREA Press ©

numbers can be improved is by tweaking the machine learning

model.

4.1 API Calls

Thus far only permissions and system calls have been used as

features in our machine learning algorithm, but there are many

other features of Android applications that may be indicative

of their maliciousness. One such feature is the code. While

the unobfuscated source code is not usually available, much

can be learned from disassembled jar files. One feature that

can be extracted from them is which methods were called in

the Android and Java APIs. All apps share these two libraries.

In order to get the disassembled code from the .apk files, the

following steps were executed:

1) Unpack the .apk file using the unzip utility

2) Convert the classes.dex file into

classes-dex2jar.jar using the

d2j-dex2jar.sh utility

3) Use a combination of the jar and javap utilities to

print the disassembled code to a file:

$ javap -c -classpath
classes-dex2jar.jar $(jar -tf
classes-dex2jar.jar | grep "class$"
| sed s/
.class$//) > disassembled.code

The primary difficulty with getting this data into a usable

format is that many app developers have used obfuscation

techniques, either to prevent the copying of their source code

or to prevent exactly this type of analysis. The obfuscation

seems to work by having classes and methods with single letter

names (‘a’, ‘b’, etc.) and calling the desired methods indirectly

through those. Therefore, a simple heuristic was developed

to prune such classes: any class with a name shorter than 4

characters or with a parent class only 1 character long was

ignored.

If Android API classes (e.g. android.app.Activity) are

included, the classification accuracy is 0.5, meaning nothing

was learned from the data. This is probably due to the large

size of the API (several thousand classes) relative to the code

calling into it, leading to a lot of noise in the data.

However, by looking only at the Java API classes (e.g.

java.util.Random), the model can successfully learn

from the data. In Figure 2, the classification accuracies

achieved using the same 200 app dataset that was previously

used to compare system call and permission features are

shown. As seen, the classification accuracy increased to around

75-80% as the model trained on the Java API call data using

a 200 app dataset.

Fig. 3

NUMBER OF TRAINING STEPS VS CLASSIFICATION ACCURACY USING JAVA

API CALL DATA ON 2000 APP DATASET.

Fig. 2

NUMBER OF TRAINING STEPS VS CLASSIFICATION ACCURACY USING JAVA

API CALL DATA ON 200 APP DATASET.

Java API calls are a more telling feature than system call

data in determining maliciousness, and almost as accurate as

permission requests. This is probably because the API calls

give more specific information about what actions the apps are

trying to perform, whereas many system calls can be used in

a wide variety of contexts and for a wide variety of purposes.

While the initial experiment with Java APIs as the feature used

the original 200 app dataset in order to get a fair comparison to

the classification accuracies of system calls and permissions,

it was also tested against a larger dataset. Figure 3 contains

the results from an experiment using 2,000 apps (half benign,

half malicious). As seen, the classification accuracy increased

to around 82% using Java API call data on this larger dataset.

Tables 5 and 6 list Java API classes that were found to be

220 Int'l Conf. Security and Management | SAM'17 |

ISBN: 1-60132-467-7, CSREA Press ©

most indicative of maliciousness and benignity, respectively,

for the 2000 app dataset experiment.

Table 5

CLASSES INDICATIVE OF MALICIOUSNESS

Rank Class Weight
1 java.net.SocketException 0.309
2 java.lang.StringBuffer 0.303
3 java.lang.Character 0.294
4 javax.crypto.Cipher 0.282
5 java.io.ByteArrayInputStream 0.193
6 java.lang.UnsatisfiedLinkError 0.165
7 java.net.Proxy 0.161
8 java.util.Hashtable 0.161
9 java.util.zip.InflaterInputStream 0.157
10 java.util.GregorianCalendar 0.153

Table 6

CLASSES INDICATIVE OF BENIGNITY

Rank Class Weight
1 java.util.AbstractList 0.266
2 java.util.concurrent.atomic.AtomicLong 0.229
3 java.lang.reflect.Constructor 0.218
4 java.security.Signature 0.209
5 java.io.FilterOutputStream 0.199
6 java.util.Currency 0.194
7 java.security.SecureRandom 0.188
8 java.lang.Throwable 0.177
9 java.nio.charset.Charset 0.174
10 java.lang.Runtime 0.173

Perhaps the fact that some of the classes most indica-

tive of benignity, according to Table 6, are data struc-

tures is a reflection of the more careful coding practices

used for benign applications. The presence of the secu-

rity related classes, java.security.Signature and

java.security.SecureRandom, is perhaps unsurpris-

ing since malicious app authors have little motivation to

protect their victims from other attackers.

The larger dataset allowed the model to better learn

how to distinguish malicious apps from benign ones.

Not only this, but some of the features that were con-

sidered top indicators of maliciousness became consider-

ably less significant with a larger dataset. For example,

Java.crypto.SecretKeyFactory, which was the 5th

most indicative of maliciousness in the 200 app dataset,

became the 66th indicator of maliciousness in the 2000 app

dataset. Since the small dataset can’t be expected to be repre-

sentative of all applications, such change should be expected.

4.2 Learning Rate Decay

In previous work, the learning rate was constant. This can

be improved upon through exponential decay of the learning

rate over the course of training the network. This prevents

overfitting to the training data, and ultimately results in an

increased classification accuracy. Figure 4 shows the exponen-

tial decay of a learning rate starting at 0.01 using the function

y = (0.01)(0.975)x over the course of 50 training steps.

Fig. 5

NUMBER OF TRAINING STEPS VS CLASSIFICATION ACCURACY WITH AND

WITHOUT LEARNING RATE DECAY.

To compare the differences between a decayed learning rate

and a constant learning rate, the 2,000 app dataset was tested

using API calls as the feature for the machine learning

algorithm with a learning rate of 0.01. Figure 5 shows the

accuracy difference between a decayed learning rate, shown

in blue, and a constant learning rate, shown in green, for

every training step. As seen, the decayed learning rate helped

improve classification accuracy by several percentage points.

Without decay, the network is effectively overwriting what it

learned early in the training cycle by overzealously updating

the weights during later stages.

Fig. 4

EXPONENTIALLY DECAYING LEARNING RATE FUNCTION FROM .01 OVER

0-50 STEPS.

4.3 Hyperparameter Optimization

In machine learning, a distinction can be made between

parameters, such as the weights, and hyperparameters, such as

Int'l Conf. Security and Management | SAM'17 | 221

ISBN: 1-60132-467-7, CSREA Press ©

the learning rate. While parameters are the values in the model

that are affected by the training process, hyperparameters are

the higher-level properties of the model that are chosen by

the user [28]. Other examples of hyperparameters include the

rate at which the learning rate decays, the number of training

steps, and the size of sample chunks used for the training. De-

termining the best hyperparameter value is an important step.

One method is to run the entire model multiple times using

a range of values to determine what works best. However,

the parameters can’t be considered completely independently

of each other because there are some combinations that can

lead to undesirable performance. For example, combining a

relatively high learning rate (greater than 0.01) and large

chunks of samples (200 apps in each) for training led to

instability in the algorithm that caused the weights to become

NaN. This makes the model useless.

Figure 6 summarizes the data obtained that helped to deter-

mine the best rate of decay for the learning rate. In Figure

6, the classification accuracy increases as the decay rate

increases to 0.98. Since the rate is raised to a power (y =
(0.01)(0.975)x), a higher rate actually means that the learning

rate decreases more slowly over the course of the training. The

reason the model isn’t learning enough with lower (faster)

decay rates is that the weights are only seriously affected by

the first batches of samples, not later ones. Some outliers are to

be expected since the process is non-deterministic to a degree.

In Figure 6, a sample of 2,000 apps was used and the model

was trained on the API methods called. The classification

accuracy is an average of the ones achieved for 120, 160,

and 200 training steps to reduce noise. The learning rate used

was 0.005.

Fig. 6

DECAY RATE OF LEARNING VS CLASSIFICATION ACCURACY.

Figure 7 shows the average accuracy from training again on

API calls using a decay rate of 0.98 and varying learning

rates. The learning rate on the x-axis controls how much

the weights in the network are updated on each run. The

classification accuracy on the y-axis is an average for runs

of 20, 40, 60, ..., 200 training steps. Since smaller learning

rates take more training in order to achieve optimal accuracy,

it wouldn’t have been fair to compare them for a single number

of training steps. As such, an average was taken instead. It can

be conclude from Figure 7 that a learning rate of 0.0025 is

optimal for this data and hyperparameters.

Fig. 7

LEARNING RATE VS AVERAGE CLASSIFICATION ACCURACY.

4.4 Making Experimentation Easier

In science it’s useful to have an experiment that can run

relatively quickly so that you can try different parameters and

techniques to see what works within a reasonable amount of

time. To achieve this goal, the software used for this work was

modified to make it easier to run multiple trials, perhaps with

different parameters. Both the results and parameters used are

recorded automatically for later analysis. The software was

also written in such a way as to make it very easy to use a

different feature or a different machine learning model without

having to change other parts of the data pipeline. Since this

may be of use to other researchers, it’s open source here:

https://github.com/mwleeds/android-malware-analysis.

5. Conclusion
Mobile malware is a constant threat for Android users. As

these devices become increasingly important in our daily

lives, it is of the utmost importance to ensure their safety

and security. As such, the development and testing of new,

effective and efficient malware detection techniques must be

a priority. In this research, the use of Java API call data was

examined and compared to the previously tested permissions

data and system call data features. The specific permissions,

system calls, and Java API calls that proved to be the most

indicative of maliciousness or benignity, according to the

machine learning model, were also found. Furthermore, the

222 Int'l Conf. Security and Management | SAM'17 |

ISBN: 1-60132-467-7, CSREA Press ©

impact on classification accuracy of using a decaying learning

rate, of hyperparameter optimization, and of randomized vali-

dation was examined, and a considerable improvement in our

classification accuracy through these techniques was achieved.

Java API call data proves to be helpful in the classification

process. Ultimately, an 82% classification accuracy with Java

API call data to distinguish between a malicious and benign

app was achieved.

6. Future Work
The utilization of different machine learning models, such as

Support Vector Machines, is our main priority for future work.

We also plan to combine all of the features into one model to

further improve classification accuracy. Finally, we will strive

to add more features to our model, either through static or

dynamic analysis of applications.

References
[1] Sophos. (2016) When malware goes mobile. [Online].

Available: https://www.sophos.com/en-us/security-news-trends/security-
trends/malware-goes-mobile.aspx

[2] L. Spencer. (2015) 16 million mobile devices hit by malware in 2014:
Alcatel-lucent. [Online]. Available: http://www.zdnet.com/article/16-
million-mobile-devices-hit-by-malware-in-2014-alcatel-lucent/

[3] Mcafee. (2014, February) Mcafee mobile security report: Whos watch-
ing you?

[4] G. Kelly. (2014) Report: 97% of mobile malware is on
android. this is the easy way you stay safe. [Online].
Available: http://www.forbes.com/sites/gordonkelly/2014/03/24/report-
97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-
safe/#4ddd7dbe7d53

[5] J. Callaham. (2015) Google says there are now
1.4 billion active android devices worldwide. [Online].
Available: http://www.androidcentral.com/google-says-there-are-now-
14-billion-active-android-devices-worldwide

[6] Mcafee. (2016) Mobile threat report: Whats on the horizon for 2016.
[Online]. Available: http://www.mcafee.com/us/resources/reports/rp-
mobile-threat-report-2016.pdf

[7] D. Security. (2016) Duo security finds over 90 percent
of android devices run outdated operating systems. [Online].
Available: https://duo.com/about/press/releases/duo-security-finds-over-
90-percent-of-android-devices-run-outdated-operating-systems

[8] J. Sahs and L. Khan, “A machine learning approach to android malware
detection,” in Intelligence and Security Informatics Conference (EISIC),
2012 European. IEEE, 2012, pp. 141–147.

[9] A. Altaher and O. BaRukab, “Android malware classification based
on anfis with fuzzy c-means clustering using significant application
permissions.”

[10] A. Altaher, “Classification of android malware applications using feature
selection and classification algorithms,” VAWKUM Transactions on
Computer Sciences, vol. 10, no. 1, pp. 1–5, 2016.

[11] Z. Aung and W. Zaw, “Permission based android malware detection,”
vol. 2, no. 2, 2013.

[12] D. Y. Hossein Fereidooni, Mauro Conti and A. Sperduti, “Anastasia:
Android malware detection using static analysis of applications.”

[13] L. S. Lei Cen, Christoher S. Gates and N. Li, “A probabilistic discrim-
inative model for android malware detection with decompiled source
code,” vol. 12, no. 4, July/August 2015.

[14] W. Li, J. Ge, and G. Dai, “Detecting malware for android platform:
An svm-based approach,” in Cyber Security and Cloud Computing
(CSCloud), 2015 IEEE 2nd International Conference on. IEEE, 2015,
pp. 464–469.

[15] S. Abdulla and A. Altaher, “Intelligent approach for android malware
detection,” KSII Transactions on Internet and Information Systems
(TIIS), vol. 9, no. 8, pp. 2964–2983, 2015.

[16] M. A. D. M. Marco Aresu, Davide Ariu and G. Giacinto, “Clustering
android malware families by http traffic,” October 2015.

[17] I. S. Shahid Alam, Ryan Riley and N. Carkaci, “Droidclone: Detecting
android malware variants by exposing code clones,” 2016.

[18] L. C. Y. Z. G. Y. Wang, Zhaoguo and Y. Xue, “Droidchain: A novel
android malware detection method based on behavior chains,” Mobile
Security, Privacy and Forensics, Pervasive and Mobile Computing,
vol. 32, pp. 3–14, 2016.

[19] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on. IEEE, 2012, pp. 62–69.

[20] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, “Droidscribe: Classifying android malware based on
runtime behavior,” in Security and Privacy Workshops (SPW), 2016
IEEE. IEEE, 2016, pp. 252–261.

[21] M. S. Alam and S. T. Vuong, “Random forest classification for de-
tecting android malware,” in Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and Social
Computing. IEEE, 2013, pp. 663–669.

[22] S. P. Bengio, Yoshua and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” 1994.

[23] M. Dimjaševic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Android
malware detection based on system calls,” University of Utah, Tech.
Rep, 2015.

[24] M. K. Matthew Leeds and T. Atkison, “A comparison of features for
android malware detection,” in Proceedings of the 2017 ACM Southeast
Regional Conference. ACM, 2017.

[25] I. Google. Android developer documenta-
tion: Manifest.permission. [Online]. Available:
https://developer.android.com/reference/android/Manifest.permission.html

[26] Linux. Linux man pages: fchmodat. [Online]. Available:
http://man7.org/linux/man-pages/man2/fchmodat.2.html

[27] Linux. Linux man pages: readlinkat. [Online]. Available:
http://man7.org/linux/man-pages/man2/readlinkat.2.html

[28] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

Int'l Conf. Security and Management | SAM'17 | 223

ISBN: 1-60132-467-7, CSREA Press ©

