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ABSTRACT

With the increase in mobile device use, there is a greater need
for increasingly sophisticated malware detection algorithms.
The research presented in this paper examines two types of
features of Android applications, permission requests and
system calls, as a way to detect malware. We are able to
differentiate between benign and malicious apps by applying
a machine learning algorithm. The model that is presented
here achieved a classification accuracy of around 80% using
permissions and 60% using system calls for a relatively small
dataset. In the future, different machine learning algorithms
will be examined to see if there is a more suitable algorithm.
More features will also be taken into account and the training
set will be expanded.
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1 INTRODUCTION

Billions of people are using mobile devices as their primary
means of communication and information access. Research
estimates that there will be more than six billion smartphone
users by 2020 and securing these devices should be a top
priority both in business and personal use [26]. Nonetheless,
these devices have become the target of many attackers who
seek to gain access to them. It was estimated that malware
had infected 16 million mobile devices as of 2014 [27]. Malware
is extremely dangerous and can give the attacker access to
the user’s personal information such as passwords, bank
accounts, and other identity information. Furthermore, it has
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become common practice for apps to record more data than is
necessary, thus causing an oversharing problem as exemplified
in [19]. As of this report, 82 percent of all apps know when
Wi-fi and data networks are being used, when the device is
turned on, and the current and last location of the device
just from using the app [19]. In the first half of 2016, the
GozNym malware took 4 million dollars in just days from 24
U.S. and Canadian banks by targeting customer accounts [26].
Malware is a part of our daily lives. Therefore, securing mobile
devices and being able to detect when/if malware is being
installed on a mobile device is of utmost importance. Due
to limited computational resources and different execution
environments, mobile security offers its own challenges not
encountered with desktops. However, recent improvements in
hardware and advancements in computer science have opened
the door for machine learning algorithms to be effectively
applied to extract useful information from large datasets.
With the advancement of Tensorflow, a flexible open source
software library for machine learning, it has become feasible
to gain insights from data that wouldn’t otherwise be possible.
It is important to note that the research presented in this
paper is an extension of a previous effort described in [14].

1.1 Targeting the Android Operating
System

As seen in Figure 1, the Android Operating System is being
targeted by numerous attackers. The mobile malware threats
for Android devices far outnumber all the other platforms.
Since 2010, SophosLabs has observed more than 1.5 million
samples of Android malware [26]. One reason is the preva-
lence of the Android operating system. According to [8, 13],
approximately 1.4 billion devices are running the Android op-
erating system, and over 90% are using an out-dated version
of the operating system [24]. Security holes in the operating
system are used by attackers to gain access to the device.
When these security holes are discovered, fixes are created
and updates are released. If the operating system is not kept
up-to-date, the device can be exploited by attackers. Re-
cently, a number of vulnerabilities were found in the Android
operating system. This collection of bugs was referred to as
“Stagefright”, in reference to the Stagefright libraries (under-
lying code in the OS that is shared by many applications)
contained in the Android OS [20]. These vulnerabilities are
particularly nasty due to the fact that they allow an attacker
to remotely execute code on someone’s phone by sending a
specially crafted MMS message [20]. In fact, remote access
tools (RAT), such as those used in Stagefright, are easily
available on the Internet for sale. One particular tool even
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Figure 1: This pie chart shows the proportion of mo-
bile malware broken down by individual platforms
in 2013, and historically.[13]

has a well-polished website with tutorials, multiple pricing
models and easy to use payment systems[20]. Because there
are so many Android devices in use today, even relatively low
infection rates translate to a large number of actual infected
devices.

Another reason that Android devices are being targeted
is the fact that users can download applications from third
parties or load them directly onto the device from Android
Application Files. They are not limited to just the Play Store.
According to [20], of 150 million apps that were scanned on
the Play Store in the last 3 months in over 190 countries,
there were at least 37 million counts of malware detected. In
the fourth quarter of 2015, there were 2.4 million new mobile
malware threats detected [20]. However, following the events
of the summer of 2015 (Stagefright), Google has committed
to rolling out updates on a monthly basis for the foreseeable
future [20]. iOS users are much less likely to have malware
accidentally installed on their device because Apple required
its users to get apps from the official App Store [26].

1.2 Android Malware

Malware can take on many different forms, and can be loaded
on a device in many different ways. Some are trojan horse.
They are attached to legitimate apps, but will perform mali-
cious activities in the background without the user’s knowl-
edge or consent. As far as the user knows, the app is only
performing its intended functions. Others are known as “drive-
by” downloads [31]. These are downloads that the user is
enticed to download that seem legitimate, but are actually
just malware. Malware can also be downloaded at run-time.
This is known as an “update attack”.
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Malware is written to exploit a variety of vulnerabilities
and for a variety of purposes. Attackers can use malware
to collect information regarding anything from contacts and
passwords, to bank information and social security numbers.
They can also use malware to gain control of the device.
By gaining this control, they can then send text messages
to premium-rate numbers to steal money or add the phone
to a botnet that can be controlled (for a DDoS attack for
example) [31].

1.3 Techniques to Avoid Malware

Avoiding malware is not always an easy task; however, there
are several techniques or strategies that can be used to lessen
the chances of a malware infection. One of the easiest is to
limit app downloads to reputable apps from the Play Store.
Since the Play Store has a vetting process that apps must go
through before the Play Store will release them to the public,
it is much harder for an attacker to get malware apps into
the Play Store. Android devices also allow apps to be loaded
from USB devices; however, this is not a good idea either.
Inserting an infected USB drive into the Android device can
itself infect the device, and any app installed on the USB drive
may be infected. Since it did not come from the Play Store,
it is unlikely that the app will have been tested for malware.
Recently, Mcafee came out with a report which entails the
most recent mobile threats, including those that were released
in Stagefright and Stagefright 2. McAfee [20] recommends
turning off your phone’s ability to automatically retrieve
MMS (Multimedia Message Service) messages. Furthermore,
it is important to not follow links from unknown sources.
As seen in many email viruses, attackers can use links to
install a virus on a computer. The same is true for mobile
devices. In addition to these proactive measures, reactive
measures, such as regularly scanning the device with anti-
virus software, can help to further reduce the risk of installing
malware on an Android device. While these strategies are
good and help to avoid most malware, they are not a catch-all.
More research needs to be done to develop new methods for
detecting malware before it is even installed.

1.4 Machine Learning Strategies

As with everything in Computer Science, there is “No Free
Lunch” [30] meaning there is no machine learning algorithm
that works for every problem. Generally, training time and
accuracy are considered important metrics to consider. There
are a lot of factors to consider when choosing the right ma-
chine learning algorithm for what you are doing. In [21]
Williams et al. compare five such algorithms. One example
is Naive Bayes Tree (NBTree) which is a hybrid of a decision
tree classifier and a Naive Bayes classifier. It is designed to
allow accuracy to scale up with increasingly large training
datasets, which is something that would be beneficial to the
research presented in this paper [21]. However, the authors
conclude that while it did have one of the highest accuracies
among the other algorithms tested, it had by far the highest
normalized build times [21]. This could be a factor worth
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considering depending on the application of said algorithm.
For the research presented in this paper, a neural network
with a gradient descent optimizer function is used.

1.5 Background

There have been several avenues of work in detecting mal-
ware on mobile devices using machine learning algorithms
and techniques. These techniques range from Support Vector
Machines (SVM) [23] to Neural Networks [5] to Classification
Trees [4]. In [6], Zami et al. describes a framework that takes
android apps and extracts permissions from each followed
by classification of each as malware or goodware, somewhat
similar to our process. However, the author then proceeds by
clustering them through the K-Means clustering algorithm,
followed by classification of each through the J48 Decision
Tree algorithm. In a slightly different example, [12] Fereidooni
et al. proposed ANASTASIA, a Machine Learning-based mal-
ware detection using static analysis of Android applications.
Their tool extracted as many informative features as possible
from Android applications and was tested on several classifi-
cation algorithms to determine which one would perform the
best. Another example, [15] Cen et al. shows how to use a
probabilistic discriminative learning model with decompiled
source code as well as permission features. In [23], Sahs et
al. described a malware detection method using a One-Class
Support Vector Machine. Li et al. [16] used a SVM similar
approach by looking at dangerous permissions that are likely
used by Android malware. A neuro-fuzzy based clustering
method is presented by Altaher et al. in [4]. Altaher et al.
uses a fuzzy clustering method to determine the appropriate
number of clusters again looking at permissions used by the
Android application. They were able to refine their process in
[2]. Some are able to simplify the identification of similar mal-
ware by HTTP Traffic. In [18], Aresu et al. they are able to
group mobile botnet families by analyzing the HTTP traffic
they generate. With the algorithm they used, a small number
of signatures can be extracted from the clusters, allowing it
to achieve a good tradeoff between the detection rate and
the false positive rate. In a more simple example, [25] Alam
et al. uses a system that exposes code clones and detects
both bytecode and native code Android malware variants.
In [29], Wang et al. propose a behavior chain based method
that can detect Android malware including privacy leakage,
SMS financial charges, malware installation, and privilege
escalation by using matrix theory. In [11], Dong-Jie et al. use
a static feature-based mechanism to extract representative
configuration and trace APT calls for identifying the Android
malware. In [9], Santanu Kumar et al. used Conformal Pre-
diction as an evaluation framework during runtime for their
SVM-based classification approach. In [3], Alam et al. were
able to use a random forest of decision trees in detecting
malware in Android devices. According to [7], Bengio et al.
found that gradient descent may be inadequate to train for
tasks involving long-term dependencies, such as consistently
dangerous permissions.
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In [10], Dimjagevic et al. use “maline” to orchestrate run-
ning applications in virtual devices, sending random events to
them, and recording the system calls they make. We make use
of the same software in this paper with a different machine
learning algorithm.

2 METHODOLOGY

To execute the methodology for this effort, a set of Python
and Bash scripts were developed. These developed scripts
automated our analysis of the Android data. They controlled
most of the processes from gathering Android app samples,
processing the samples, training a model on the samples,
testing the model, and graphing the resulting data.

2.1 Gathering Malware Samples

Malware samples can be gathered in three basic ways. First,
they can be “directly” gathered using a honeypot. Honey-
pots are mechanisms that can be used to gather information
about attack methods. Second, they can be gathered from
research repositories. These repositories can be either pub-
lic or semi-public. Finally, they can be purchased directly
from black-hat hackers. The malware samples used in this
research were gathered from Andrototal.org. Andrototal.org
is a semi-public repository that is available to researchers
[17]. Malware is currently evolving and the changes over time
can be significant. Therefore, it is extremely important that
the data used to train the prediction models is current. For
this reason, the malware samples gathered were from 2013,
2014, 2015, and the first three months of 2016. Once access
to the provided API was obtained, a command similar to the
following was used to gather the samples:

$ python samples_cli.py getbydate -at-key <API key>
20160101:0000 20160401:0000

These samples came as .apk files named with their own
cryptographic hash to avoid confusion and confirmation of
accurate download.

2.2 Classification

When developing a classification method, it is imperative to
know whether or not each app in the training set is malicious
in order to accurately train the model. The dataset used
in this research came from Andrototal.org, which provides
this needed information. Using the known classification cate-
gory, the apps were sorted into folders, malicious_apk and
benign_apk. We were able to use the following command to
get the reports from AndroTotal based on the hash of the
APK file:

$ python andrototal_cli.py analysis -at-key <API key>
+ <hash of apk>

2.3 Feature Extraction

To compare static and dynamic analysis of apps, we look at
two features: permissions requested at install-time (such as
access to location information or cameras) and system calls
made at run-time (such as filesystem or network operations).
Since malicious apps tend to occasionally request different
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permissions and make different system calls than benign
ones, these features allow us to classify apps with respectable
accuracy.

There were several steps involved in extracting the fea-
tures needed for this effort. The following are the main
two aspects to retrieving the permission features. A Bash
script was created and used to unpack the apk files into
the appropriate directories. The script also converted the
AndroidManifest.xml file from its original binary format to a
plain text file; and lastly, the script checked to see if the XML
is valid. Next, a Python script was created to read the names
of the usable apps, examine each one’s AndroidManifest.xml,
then traverse the tree to find uses-permisssion elements.
For each of the standard permissions (app-specific permis-
sions were ignored), the permissions presence for each of the
apps was recorded as either a 1 or 0. This effectively created
a two dimensional array of bits. Lastly, this information, as
well as each app’s classification value, was stored in a JSON
file.

In order to determine the system calls made at run-time, we
used “maline”, which can be found in [22]. Some modifications
were made to make it work with a virtual device running API
Level 25. Using that and the tools provided by Google, each
application was installed on a virtual device and executed
while being sent random input events. The system calls made
during execution were logged using “strace”. That file was
parsed to determine the number of times each system call
was used. This information was then reduced to a bit vector
denoting whether each call was used at all so it could be used
with the same ML model as the permissions data.

2.4 Training the Model

for i in range(int(sys.argv[1])):
j = random.randrange(1, len{malicious_app_name_chunks))
k = random. randrange(1, len(benign_app_name_chunks))
app_names_chunk = malicious_app_name_chunks[j] + benign_app_name_chunks[k]
batch_xs = [dataset['apps'][app]['vector'] for app in app_names_chunk]
batch_ys = [dataset['apps'][app]['malicious'] for app in app_names_chunk]
sess.run(train_step, feed dict={x: batch_xs, y_: batch_ys})

Figure 2: This is the Python code that chooses
chunks of apps using a random number generator
and feeds them into the model so it can learn from
them. The train step variable tells TF to use gradi-
ent descent optimization to minimize the cross en-
tropy (the difference between the correct and the
actual results).

TensorFlow allows you to write a small amount of high-level
code defining parameters and it takes care of the implemen-
tation [1]. The TensorFlow MNIST tutorial provided a useful
guide for how to use TensorFlow for classification. Specifically,
a neural network was created to link each input variable to
each output classification. Gradient Descent optimization
was used with a step size of 0.01 for the training. Batches of
apps with equal proportions of malware and benign were run
through the model many times so it could learn (update the
weights). Figure 2 provides the Python code used to feed the
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model. Figure 3 provides a visual of the organization of the
network. The same mathematical model is used to train for
both features, permissions and system calls. This provides
the classification of the given inputs.

+by|—
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Figure 3: This figure shows how a set of weights and
biases followed by a softmax function can be used to
classify a set of input values. Each weight can be
thought of as a neuron and each value for y repre-
sents a category (in our case y;=1 means malicious
and y2=1 means benign) [28].

2.5 Evaluating the Model’s Effectiveness

correct_prediction = tf.equal(tf. argmax(y, 1), tf.argmax{y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
app_names_chunk = malicious_app_name_chunks[0] + benign_app_name_chunks[0]

hunk]
chunk]

test_x [dataset['apps'][app][ ' vector'] for app in app_name:
[dataset['apps'][app][ ' malicious'] for app in app_names_

print(sess.run(accuracy, feed_dict={x: test_xs, y_: test_ys}))

test_y

Figure 4: This is the Python code that evaluates the
model’s effectiveness by comparing its classifications
of a set of apps with their actual classifications.

In order to show that the model created from the Tensor-
Flow process described above is effective, the model must
be tested on a set of samples that are separate from the
samples that were used for the training. If the information
stored in the weights generalizes beyond the training data,
it’s useful for classifying even never-before-seen malware such
as zero-days. Equal-sized chunks of malicious and benign
apps were input into the model, and its guess classification
was compared with the correct answer, producing a number
between zero and one that represents the fraction of samples
classified correctly. Figure 4 provides the Python code that
was used to evaluate the model’s effectiveness. The Results
section below will provide the values and an explanation of
the results.

2.6 Running Trials

A Bash script was developed and used in order to run multiple
experimental trials of the TensorFlow code for each number
of training steps (up to 50 in intervals of 5). The script also
averaged the results, and then wrote the results to a CSV
(comma separated value) file. This file could then be read by
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a Python script which used matplotlib to plot the resulting
data.

3 RESULTS

In order to verify the resulting weights, it is essential to
run the experiment many times. It is also important to use
the same sample set when testing the model with different
numbers of training steps. Only by using the same sample
set can a judgement on the best number of training steps
be made. Figure 5 below displays the resulting classification
accuracy for the different number of training steps used to
examine the permissions data of Android devices for malware.
The model was trained with 0-50 training steps in 5 step
increments. Each “step” involved passing a sample subset
through the model. If every sample in the test subset was
correctly classified as either malicious or benign, then a score
of 1.0 was recorded on the y-axis. Each data point on the
graph was computed by running 10 trials and taking the
average of the scores. This was done to verify the results and
to help reduce noise. The results graph (Figure 5) shows that
the model reached an average accuracy rate of approximately
80% with a high of 85% for 25 training steps. The accuracy
rate plateaued quickly, reaching near peak accuracy after 5
training steps (n = 5).

Number of Training Steps vs Classification Accuracy

1.0

09l
> : [ ] :
g ® <
g e © e o
3 o0s| i : 1
g °
= (]
s ‘
3
3
£ 07]
a
o
v

06|

[ ) !
05 i i i i
0 10 20 30 40 50
Number of Training Steps
Figure 5: This graph shows the model’s classifica-

tion accuracy for different number of training steps
when using the permissions data to find malware on
Android devices.

Similar positive results were achieved for the system call
features experiments, as shown in Figure 6. As with the
permissions data feature model above, the system call data
model was trained with 0-50 training steps in 5 step incre-
ments. Each “step” involved passing a sample subset through
the model. Again, if every sample in the test subset was cor-
rectly classified as either malicious or benign, then a score of
1.0 was recorded on the y-axis. Each data point on the graph

ACM SE '17, April 13-15, 2017, Kennesaw, GA, USA

was computed by running 10 trials and taking the average of
the scores. These results show that the models reached an
average accuracy rate of approximately 60% with a high of
65% for 25 training steps. The accuracy rate plateaued again
quickly, but took 10 training steps (n = 10) to reach near
peak accuracy, which was slightly more than the permissions
model.

10 Number of Training Steps vs Classification Accuracy
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Figure 6: This graph shows the model’s classifica-
tion accuracy for different number of training steps
when using the system call data to find malware on
Android devices.

This fast plateau achievement on both methods is impor-
tant to show that our models can detect malware quickly
without having to waste time on additional training steps.
This is promising for the future of this effort when moving
toward more resource constrained environments.

From the figures above it is clear that the permissions were
a better indicator of malicious activity than system calls. This
is probably because permissions control access to sensitive
data, whereas the same system call may be used innocently
or maliciously depending on the parameters and the context.
The low classification accuracy when using system calls could
also be due to the number of samples used: 100 benign and
100 malicious.

4 FUTURE WORK

Android app permission requests and system calls are the
main focus of this paper; however, future work could ex-
pand the number of features used to train the dataset and
perhaps combine them into one model rather than training
separately. Incorporating system call frequency (total number
of times) rather than appearance (whether or not they occur)
could further improve the model. Initially these ideas could
be tested in a virtual machine environment where compu-
tational resources are not a concern; however, the ultimate
goal is to create a downloadable Android app that could
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run real-time checks for malware on the device. As such, the
algorithm would need to be streamed-lined to work with the
limited resources of a phone. Finally, other machine learn-
ing techniques can be tested to determine if there are more
appropriate methods for malware detection.

5 CONCLUSION

Malware is a current threat facing Android users. As users
have come to depend on these devices for communication
and information, it is essential to make sure they are secure.
Therefore, developing and testing new sophisticated malware
detection techniques must be a priority. This paper compared
two prominent features used to detect Android malware,
permissions and system calls, and applied machine learning
to both. The results showed that permissions data was better
at detecting malware than system call data. An average
classification accuracy rate of 80% was achieved when using
permissions data to determine malicious activity on Android
devices. Therefore, it is a reliable way to detect malware.
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